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ABSTRACT

The purpose of this research is to develop an analytical model for the Coordination

Level of Intelligent Machines, which, with the mathematical formulation for the

Organization Level and the well developed control theory, would complete a mathematical

theory for Intelligent Machines. The current progress toward such an analytical model is

presented in this proposal. The framework of the Coordination Level investigated consists

of a dispatcher, a set of coordinators. A formal model, called coordination structure, has

been developed to describe analytically the information structure and information flow for

the coordination activities in the Coordination LeveL Specifically, the coordination strucaa'e

offers a formalism to

• Describe the language (or task plans) translation characteristics of the

dispatcher and the coordinators,

• Represent the individual process within the dispatcher and the

coordinators, especially their concurrency and conflict,

• Specify the cooperation and connection among the dispatcher and the

coordinators,

• Perform the process analysis such as deadlock-free, boundedness, ete, for

the Coordination Level,

• Provide a control and communication mechanism for the simulation and

real-time monition of the task processes in the Coordination Level.

A simple scheduling procedure for the task scheduling in the coordination structure

is suggested. The task translation in the coordination structure is achieved by probabilistic

learning processes. The learning processes are measured with Entropies and their

convergence is guaranteed. A case study for a simple intelligent manipulator system is

described, where a simple coordination structure with one dispatcher and three coordinators

is built. The simulation of the task processes performed verifies the soundness of tl_

theoretical results developed so far. Finally, we summarize the results with conclusions and

give suggestions for the future research focuses on the modeling of Coordination Level of

Intelligent Machines.

vi



1. Introduction

In this early stage in the development of Intelligent Machines, methodological

issues are both open and central. Different ideas for the formalization of the definitions and

the structure of Intelligent Machines have been proposed by and debated among various

researchers [Albus 1975, Saridis 1977, Bejczy, Meystel, Stephanou, Pao, 1986, Vamos

1987, Antsaklis et al 1988]. The approach proposed by Saridis (1977) can be thought as

the result of the intersection of the three major disciplines of Artificial Intelligence,

Operation Research, and Control Theory.

The structure of Intelligent Machines is defined by Saridis (1977, 79-80, 83, 85,

87) to be the strueun'c of Hierarchically Intelligent Control Systems, composed of three

levels hierarchically ordered according to the principle of Increasing Precision with

Decreasing Intelligence (IPDI) [Saridis and Stephanou 1977, Saridis 1988], namely:

the Organization Level, performing general information processing tasks in association

with a long-term memory; the Coordination Level, dealing with specific information

processing tasks with a short-term memory; and the Execution Level which performs

the execution of various tasks through hardware using feedback control methods (Figure

1.1). A mathematical theory for Intelligent Machines has been presented in a recent paper

by Saridis and Valavanis (1988), where the mathematical formulation for the Organization

Level was developed.

The Coordination Level of an Intelligent Machine is an intermediate structure

serving as an interface between its Organization Level and Execution Level for dispatching

organizational information to execution devices. Its objective is the actual formulation of the
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control problem associated with the most probable complete and compatible plan

formulated by the Organization Level thatwill execute in real-time the requested job

[Saridisand Valavanis 1988]. The purpose of thisresearch is to develop an analytical

model for the Coordination Level of IntelligentMachines, which, with the mathematical

formulation for the Organization Level and the wcU developed control theory, would

complete a mathematical theory for Intelligent Machine, s. It should be noted that a model for

the Coordination Level isnot required to represent how the coordination activitiesare

actuallyrealizedin detail,however, any valid model should atleastprovide a controland

communication mechanism for the coordination. This control and communication

mechanism willenable the establishmentof the information structurewhich specifiesthe

necessary precedence relationship for the relevant information processing in the

Coordination Level, and the formulationof the information flow which characterizesthe

actualdecision-making activitiesforthe achievement of the coordinationobjective.

This report presents the current progress toward such analyticalmodel. The

framework of the Coordination Level investigatedconsists of a dispatcher,a set of

coordinators. A formal model, called coordination structure,has been developed to

describe analytically the coordination activities among the dispatcher and the coordinators

of a Coordination Level [Wang and Saridis 1988]. The use of this coordination structure

enables us to

1. Describe the language (or task plans) translation characteristics of the

dispatcher and the coordinators.
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2. Represent the individual process within the dispatcher and the

coordinators, especially their concurrency and conflict.

3. Specify the cooperation and connection among the dispatcher andthe

coordinators.

4. Perform the process analysis such as deadlock-free, boundedness, etc for

the whole Coordination Level.

5. Provide a control and communication mechanism to be used for

simulating and real-time monitoring the task process in Coordination

Level.

Points 1 and 2 are accomplished by using Petri net transducers as the models for the

dispatcher and the coordinators. A Petri net transducer is capable of performing the

language translation and, like a Petri net, can describe the parallelism and conflictness

(point 2). The cooperation and connection among dispatcher and coordinators are specified

by the connection points and the receiving and sending mappings of the coordination

structure (point 3). Point 4 is realized within the context of Petri net theory, since various

concepts and analysis methods have developed for Petri nets to deal with the deadlock,

boundedness, and other process properties. The standard execution rule in Petri net theory

provides the base for the construction of Petri net controllers, which can be used to control

and monitor the coordination processes in the dispatcher and the coordinators in real-time

(point 5).

The report is organized into seven chapters. Chapter 2 reviews the distributed

problem solving system theory. Three major approaches for the distributed problem

solving systems in Distributed Artificial Intelligence and the several formal models for the



4

distributedsystems in computer science and controltheory arc discussed in thischapter.

Pctrinet and Pctrinet language theoryisintroducedin Chapter 3,where thebasicconcepts

of Pctrinet,the closure propertiesof Pctrinet language and itsrelationshipwith othcr

formal languages,arc dcscribedthrough the definitionsand examples. Chaptcr 4 presents

the major resultsof thisreport,the definitionand propertiesof the coordinationstructure.A

uniform architectureforthe dispatcherand the coordinators,the Pctrinettransducermodels

and theirsynchronous compositions areincluded in thischapter.Chapter 5 investigatesthc

task scheduling and task translationin the coordination structure.A simple scheduling

procedure based on the execution ruleof Pctrinets issuggested. The task translationis

achieved using a probabilisticmethod with learning ability.The learning process is

measured by Entropy and thelearningconvergence theorems aregiven.A case study fora

simple intcUigcntmanipulator system is dcscribcd in Chaptcr 6, where a coordination

structureis builtfor a dispatcherwith threecoordinators and the simulation of the task

process in thiscoordination structureis pcrformcd. Finally,Chapter 7 summarizcs the

report with conclusions and gives suggestions for the future research focuses on the

CoordinationLevel of IntclligcntMachines.
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2. Literature Review on Distributed Problem Solving Systems

The Coordination Level of Intelligent Machines is inherently a distributed problem-

solving system, and, as all the distributed problem-solving systems, the key issue in the

Coordination Level is the mechanism of the coherent control and communication of various

processes in the system [Yang et al 1985, Decker 1987, Saridis 1988]. Considerable

amount of work has been done during the past two decades for the distributed problem-

solving. Basically, two different kinds of approaches have been used: the approach in

Distributed Artificial Intelligence (DAr) and the approach in the theoretical computer science

and control theory. The approach taken in DAI is more emphasized in the development of

the actual distributed problem-solving systems, much of the effort is devoted into the

system programming. One the other hand, the approach taken in the theoretical computer

science and control theory is more interested in the specification of the formal process of

distributed problem-solving systems, its emphasis is on the building of the formal models

and the analysis of the properties of the systems. We will review the some key methods

and models in these two approaches briefly in the following two sections.

2.1 Distributed Problem Solving Techniques in Distributed Artificial

Intelligence

Several approaches for the coordination among the cooperating nodes of a network

system have been suggested in the DAI. The three major important approaches are called

multi-agent planning, negotiation, and the functionally-accurate, cooperative (FA/C)

approaches. In the multi-agent planning approach, the agents typically choose an agent
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from amongthemselves(perhapsthroughnegotiation)to solvetheir planningproblemand

sendthis agentall pertinent information.Theplanningagentforms a multi-agentplan that

specifiesthe actions eachagentshould take and theplanning agentdistributes the plan

amongtheagents.Sincethemulti-agentplan is basedona globalview of theproblem,the

importantinteractionsbetweenagentscanbepredictedand synchronizedaround[Corkill

1979,Futo and Gergely 1983,Georgeff 1984].The main problem with the multi-agent

planningapproachis thatachievinga _obal view of theproblemmight be timeconsuming

andcommunicationintensive,andtheperformanceof theentireagentsystemdependson

the planning agent and would be compromisedif that agent falls. In the negotiation

approach[Smith 1981a,Smith andDavis 1981,1983],anodewiU decomposea problem

task into somesetof subtasksandwill assignthesesubtasksto other nodes(for parallel

execution)basedon a bidding protocol [Smith 1981b].Since nodesmay havedifferent

capabilities,thebidding protocol allowsa subtaskto beassignedto the mostappropriate

available nodeHowever, since the nodesthat arealreadyworking on subtasksare not

available to bid until they havefinished their tasks,it maycausethe problemthat a node

which is awardedone subtaskmay thusbeunavailableto perform a subsequentlyformed

subtaskdespitebeing thebestnodefor thetask. If thenodehad beenableto predict that a

morecoherentsubtaskmight soonbe formed,the nodewould not havebid on the earlier

subtasksothat it would beavailablelater.Theinability of nodesto makesuchpredictions

can thereforecauseincoherencein the problemsolving system:the nodescould makea

morecoherentteamandimprovetheir overallperformanceif theycouldassignsubrasksto

nodesbetter.In thefunctionally-accurate, cooperative (FA/C) approach to the distributed

problem solving [Lesser 1981, Corkill 1983], nodes cooperate by generating and

exchanging tentative, partial solutions based on their limited local views of the system
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problem. By iteratively exchanging their potentially incomplete, inaccurate, and

inconsistent partial solutions, the nodes eventually converge on an overall system solution.

To cooperate coherently, the nodes would need to predict what partial solutions would be

exchanged in the furore and when, so that they could modify their problem solving

activities to form compatible partial solutions. To make these predictions, each node needs

to understand its own plans and the plans of the other nodes. "Without this understanding,

nodes may require much more time to converge on a solution since they may work at cross-

purposes.

Prediction is therefore crucial for coherent cooperation. While multi-agent planning

requires accurate predictions before it can form acceptable plans, the negotiation and the

FA/C approaches can perform despite a lack of adequate predictions, but incoherence can

degrade their performance.

One problem of applying the DAI approaches for the distributed problem solving in

the mathematical theory of Intelligent Machines is the lack of the analytical models for these

approaches. The emphasis of the DAI approaches is heavily on the system programming,

and the system behavior is usually described declaratively in some loose terms, instead of

being specified formally in terms of the wetl defined models. Therefore the formal models

for the distributed coordination processes in the Coordination Level of Intelligent Machines

have to be investigated and developed. However,

techniques in DAI can provide useful guidances

architecture of the Coordination Level.

the distributed problem solving

for the system organization and
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2.2 Formal Models for Distributed Systems

The modeling of the distributed systems had been onc of the central issues in

computer science for a long time [Pctcrson 1973, Milncr 1980, Hoarc 1985]. In thc control

theory, somc relevant works arc conducted recently under names of Discrete Event

Systems (DES) [Ramadgc and Wonham 1982, Inan and Varaiya 1988], Discrctc Event

Dynamical Systems (DEDS) [Ho and Cassundras 1983], and Decision Schema [Saridis

and Graham 1984].

Numerous theoretical models of concurrency, which can be used in DPS, have

appeared in the computer science literature during the past 25 years: Dijkstra (1985a and b),

Petri (1973), Campbell and Habermann (1974), Brinch-Hansen (1978), Hoarc (1978),

Hcwitt (1979), Puncli (1979), Milner (1980), Stecnstmp et al (1983), and Trakhtenbrot et

al (1988), to mention a few. The purpose for which the various models have been

developed includes the following: to facilitate the investigation of the behavior of

concurrent processes, to aid in the designing of concurrent systems, to iUustratc specific

process synchronization problems, and to verify the correcmess of parallel programs.

Milner (1980) has introduced an elegant calculus of synchronized communicating

processes to express the behaviors of concurrent systems up to observation equivalence,

and to provide various proof techniques. Note that Milner's approach to the semantics of

concurrency is considerably more operational than the approach used in Milne-Milncr

(1979). The theory of communicating sequential processes developed by Hoare (1985) has

been based on the ideas that input and output should be basic primitives of processing and
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that parallel composition of communicating sequential processes is a fundamental process

structuring method. It has been found that, when combined with a development of

Dijkstra's guarded command, these ideas are surprisingly versatile. It should be noted that

a major difference between the models of communicating sequential processes and the

models of automata (e.g, the finite automata) is that in communicating sequential processes

the primitive notion is that of a trace Cochavior of the process) while the notion of state is a

derived concept, whereas in the classical automata the primitive notions is that of state from

which the trace is derived.

An elegant application of Hoare's theory in the modeling of the discrete event

systems has been suggested by Inan and Varaiya (1988), where a new class of discrete

event models eaUed finitely recursive process (FRP) was introduced. It is claimed that the

FRP offers a formalism for the discrete event systems that is superior to that of finite state

machines. The basic idea in the FRP is to use a set of primitive functions to construct the

general and complex process by using recursive equations. It is clear that the fixpoint

theory has played the key role in the proof technique of FRP.

The FRP formalism seems to be very attractive and promising, however, since only

preliminary work has been done in this direction, it is still not clear how far and how well

FRP can go in incorporating the methodolo_es of the classical continuous control theory in

the representation of discrete event systems.

One of the most popular tools in the modeling of concurrent process systems and

discrete event systems, especially in manufacturing systems, is Petri net model [Al-Jaar and
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Desrochers1987,Changet al 198%88,Krauss 1988,Stotts1988,Yau 1988,Zhou et al

1988]. The major advantage of Petri net model is that it can represent the comrnonsens¢

logic formally in a quite natural way. The relatively straightforward graphical representation

and the various available analytical tools for analyzing the system structure properties are

also very helpful in using Petri net to model the systems. Much work has been done in

applying Petri net models in the modeling of robotic system and process control ['Bourbakis

1987, Cai 1987, Komoda 1984, Krogh 1988], decision-making [Ghalwash 1987-88,

Levis 1988], performance evaluation ['Narahari 1987, A1-Jaar and Desrochers 1988].

However, it should be noted that, upon to this point, no application of Petri net models in

the specification and analysis of the distributed testbeds developed in robotic systems and

process control, say, [Hayward 1988, Ionescu 1988, Karsai 1988, Lee 1987, Lee

1985,88, Pang 1988], has been made.

The focus of this research is on using Petri net to model and analyze the

coordination processes in Coordination Level of Intelligent Machines. It is interesting to

investigate the possibility and advantage of using the more general FPR formalism for this

purpose, and this will be conducted in the next step.
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3. Petri Nets and Petri Net Languages

In this chapter we introduce Petri net and Petri net Language theory. Section 3.1 is

about the basic concepts of Petri nets, and Section 3.2 is on the Petri net language theory.

These materials are quite standard and come mostly from Peterson (1981), except some

modifications on the notations and the definition of Petri net language.

3.1 Basic Concepts of Petri Nets

In this section, we give a brief introduction to Petri net theory through some

definitions and examples. Note that although only the ordinary Petri nets are treated here,

we will use the concepts in the colored Petri nets freely later in our model for the

Coordination Level, since it has been proved that as long as the number of colors is finite,

the colored Petri net model is equivalent to a (much large) ordinary Petri net ['Peterson

1980]. The detail descriptions of the colored Petri nets and another high level Petri net, the

predicate/transition nets, can be found in [Iensen 1981, Gem'ich and Lautenbach 1981].

Petri nets are tools for modeling the dynamic behavior of discrete event systems.

They consist mainly of two types of elements: places and transitions. The set of places

represents the system' s states, and the transitions represent events which change the state

of the system. A place can contain a non-negative integer number of tokens. The state of

the system modeled by a Petri net is given by its marking, i.e., the number of tokens in

each of its places. The system evolves by firing its transitions according the execution rule,

as described below.
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Definition 3.1: A Perri net (PN) is a quadruple N=(P, T, I, O) where:

1) P and T are finite sets of places and transitions, respectively, such that

PnT=_ and Pc_T_-_,

2) I: PxT --->Z is the input function,

3) O: PxT --> Z is the output function,

where Z is the set of natural numbers.

A PN can be represented by a bipartite directed multigraph, the Petri net graph. Places

are represented by circles and transitions by bars. There is an arc joining a place p to a

transition tiff I(p,t)_0, and p is called the input place of t. Analogously, there is an axe

from a transition t to a place p iff O(p,t)_d), and p is called the output place of t. Natural

numbers I(p,t) and O(p,t) are called the weights of the ares. Ares are labeled with their

weights. Labels will be omitted if the are's weight is equal to one (Figure 3.1).

For convenience, let the places be numbered Pt, P2 ..... Pro, m=lPI, in some unique

way. We introduce two vectors I(0c Z rn and O(t)c Z m to represent the input and output

function, that is, I(t) is a vector with its i-th coordinate being I(pi,t) and O(t) is a vector

with its i-th coordinate being O(pi,t). Expressions pc I(t) and pc O(t) are used to indicate

that p is an input place of t and p is an output place of t.

Definition 3.2: A marking m of a PN N is a function m: P _ Z. It gives the

number of tokens contained in each place pc P.

A token can be represented by a dot. Figure 3.1a shows a PN with its initial

marking rn0(pt)= mo (p2)=l, rn0 (p3)= 0. The marking can be more briefly expressed as a

column vector in Z m, e.g., m0 =(1 l 0) T



Pl P2 Pl P2

5

(a) (b)
01"

O= O1

10

Fig. 3.1 A Marked PN (a) Before (b) After Firing t2
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Definition 3.3: A transition t is enabled wrt a marking m if'f: rr_i(t), i.e.,

for all pc P, m(p)>r(p,t).

In figure 3a, only transition q is enabled and, in figure 3b, t2 is enabled.

Definition 3.4 (execution rule): Firing an enabled transition t consists of

removing I(p,t) tokens from each input place p and adding O(p,t) tokens to each

output place p. Let ml be the new marking resulted from firing t under the

marking m0, then, ml=m0 + O(t) - I(t), i.e., for all pe P, ml(p)=mo (p) +

O(p,t) - I(p,t).

Figure 3. lb shows the marking of the PN N after firing the enabled transition q.

The marking reached is ml=(0 0 1)T.

For a PN N with marking m, two transitions tt and t2 are said to be in parallel wrt

m iff I(tt) + I(t2)<--m. Two transitions are said to be in conflict wrt to m if I(tt)<m,

I(t2)<m, and I(q) + I(t2)>tn. By the execution rule, two transitions in parallel can be f'n'ed

simultaneously, however, only one of the two transitions in conflict can be f'u'ed and its

firing will disenable the other. Figure 3.2 gives two examples of the parallel and conflict.

Let m be the marking reached from mo by applying the firing sequence s, mo- s

--->m. If y is the count vector of s (i.e., y represents the number of times each transition has

been fined in s), then m can be expressed by the state equation

m--_ + Ay

where A=O - I =[a(p,t)], a(p,t)=O(p,t) - I(p,t), is called the incidence matrix of the Petri

net. In the example of figure 3.1,
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P3 P3
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Fig. 3.2 Two Transitions are in (a) Parallel and (b) Conflict
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-1

1

and if s=ht2q, i.e., then y=(2 I) T, leads to the marking m=mo + Ay =(0 0 I) T.

The state of a PN is defined by its marking. The fh-ing of a transition represents a

change in the state of the PN by a change in the marking of the net. The state space of a PN

with m places is the set of all markings, i.e., Z m. The change in state caused by firing a

transition is described by the next-state function defined as

Definition 3.5: The next-state function _: ZrnxT ---> Z m for a Petri net N=(P,T,

I,O) with marking m and transition t_ T is defined iff t is enables by m. If

8(re, t) is defined, then, _(m,t)=m + O(t) - I(t).

The set of all markings reached from a marked PN is called the reachabflity set of

the marked PN, which is formally defined as

Definition 3.6 (reachability set): The reachability set R(N, m) (or, R(m) when N

is clear) for a PN N with initial marking m is the set of all markings of N which

can be reached from m by firing a finite number of transitions of N.

Let T" denote the set of strings over T and X denote the empty string (the string

with zero length). The definition of the next-state function 5 can extend to strings in T" in a



obvious way: 8(m, ta)=8(8(m,0,a), 8(re, L)--m,

function under this extended def'mition.

tET, ot_ T*. We will use the next-state

15

Two sequences result from the execution of a PN: the sequence of markings (too,

ml, m2, ...) and the sequence of transitions (ti0 ' til, t i2, "'')" These two sequences are

related by the relationship 5(mk,tik)=mk+ 1 for k=0, 1, 2 ..... Both of these sequences

provide a record of the execution of the PN, one is about the state transformations, and the

other is about the corresponding system actions. Corresponding to teachability set, we use

L(N, m) (or, L(m) when N is clear) to denote the set of all possible sequences of

transitions for a Petri net N with the marking m. Note that, for a system modeled by a PN

N, L(N,m) characterizes the system behavior in the sense that all possible sequences of

the system actions are specified by the sequences in L(N,m), which is extremely

importance in system designing, analyzing, and implementing.

The following are some of the properties and questions that have been studied in the

literature about Petri nets [AI-Jaar and Desrochers 1987]. Later we will use these properties

to analyze the behavior of the Peu'i net model for Coordination Level

1) A dead/ock in a PN occurs when a marking is reached where no transitions in the

net can be f'_xl from that point on.

2) A PN is live wrt a marking m if, for any marking ha R(m), it is possible to fine

any transition in the net. Liveness guarantees the absence of deadlocks.

3) A PN is reversible or proper wrt a marking m if for every m'_ R(m),

me R(m'). Reversibility guarantees that the system modeled by the PN can re-

initialize itself. This is very important for automatic error recovery.



4) A PN is bounded wrt a marking m ff there exists a finite number k such that for

any marking in R(m) the number of tokens in each place of the PN under that

marking is less than k. When k=l, the PN is safe.
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It is easy to show that the PN in figure 3 is live, reversible, and safe, therefore it is

deadlock-free and bounded.

3.2 Petri Net Languages and Their Closure Properties

The Petri net language (PNL) defined by a PN is intend to characterize the behavior

of the system modeled by the PN through the specification of action sequences of the

system. Although various formulations for PNL have been suggested [Peterson 1976], in

order to be consistent with the definition of Petri net transducer introduced later, we

present a general unified definition for PNL which will reduce to the existing formulations

by placing the appropriate restrictions.

The PNL is defined as

Definition 3.7: A Petri net language (PNL) generated by a labeled

Petri net y=(N, Y, [3, It, F) is a set of strings over E defined by

L(T)= {[3(a):E'l 5(_t,a)eF }

where

(i) N=(P, T, I, O) is a Petri net with the initial marking It;

(ii) Z is a finite alphabet;

(iii) 13:T _ (Zw{X}) is a labeling function;

(iv) F C R(Is) is a set of thefinal markings.



Different types of PNL can be obtained by considering various restrictions placed

on the labelingfunction13and the finalmarking setF.The following threekinds of labeling

function and four kinds of final marking set are suggested in the literature:

17

Labeling function:

(i) free labelingfunction 13:_(t)_k,13(h)_13(tz)ift1_t2;

(ii) A-free labeling function 13: [3(t)_X;

Off) A-transition labeling function _: no restriction on 9;

Final marking set:

(i) F is L-type if F is a finite set of markings in ROt);

(ii) F is G-type if F={meR(I.t)l tn_ai for some i, i=1 ..... n};

(iii) F is T-type if F={me ROt)I m is a deadlock marking of PN};

(iv) F is P-type if F=ROt).

A labeled Petri net with a free labeling function is called a free-labeled Petri net, a

labeled Petri net with a L-type final marking set is called a L-type labeled Petri net, and the

corresponding PNL is called a L-type Petri net language, and so on. There exist 12 classes

of PNL resulting from the cross product of the three types of labeling functions and the

four types of the final marking specification. Figure 3.3 gives the known relations among

the classes of PNLs.

In Figure 3.4, the initial marking of the labeled PN is I.t=(1, 0, 0, 0) T, and each

transition t is labeled by the free labeling function _(t). Then

(i) If F={(0, 0, 1, 0)}, the L-type PNL is {ancb"l ru_>0};

(ii) If F={ml rn,2(0, 0, 1, 0)}, the G-type PNL is {amcbnl m__>n_>0};

(iii) The T-type PNL is {amcbndl mP.>n_P.>0};
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Fig. 3.3 The Known Reladons Among the Classes of PNLs

(An arc from a class A to a class B means that class A contains class B)
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(iv) The P-type PNL is {aml m_0}u{amcb_l m_n_}u{amcb_l _}.
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We willjustconsider L-type PNL in thisreport.Itcan bc shown thatevery L-type

PNL can be generated by a standard form Petri net defined as ['Pctea'son 1981]:

Definition 3.8: A labeled PN T=(N, Z, 13,It, F) with PNL L(T) in standard form

satisfies the following properties:

(i) The initial marking p. consists of exactly one token in a start place Ps and

zexo tokcns elsewhere.Ps_ O(t)forallteT

(il) There exists afinal place pf such that

(a) F={pf} if _.e L(_/) or F={ps, pf} if _.e L('y),

(b) p_ I(t) for all tE T,

(c)8(m,0 is undefined for all tE T, and me R(_) which have a token in pf

(i.e., m(pf)>0).

The use of the standard form labeled Petri net usually can simplify the analysis. The

L-type PNL generated by the labeled PN in standard form of Figure 3.5 is {anbncnl n_>0}.

Since it can be showed easily by pumping lemma that {anbncnl n:>0} is not a context-free

language, the result indicates that PNL is not a subset of context-free languages. It has also

be proved that the context-free language {xxRI xe Z ° with IZl>_2, and x R is the reversal of

x } cannot be generated by any labeled PN, that is, PNs are not capable of remembering

arbitrarily long sequences of arbitrary symbols. The two results together indicate that Petri

nets arc a new type of automata. However, it is emily to show that a bounded Perri nets is

equivalent to the finite state machines derived from its finite reachability set. Neglecting the

empty string X, PNL is a strictly a subset of context-sensitive language [Peterson 1973].

The relation between PNL and other formal languages has been studied by several



a

Fig. 3.5 A PNL L(y)={anbnenl n>0} Which Is Not ACont_ct-Free Language



researchers[Reghizzi 1977, Vak 1981].Figure 3.6 presentsthe relationshipof PNL to the

traditionalclassesof phrase structurelanguages.
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The closure

O)

properties of PNLs can be summarized as follows:

Concatenation: If Lx and L2 arc PNLs, then

LI L2={xlx21Xle Lt, x2e L2} isa PNL.

(ii)Union: IfLI and L-zarc PNLs, then

LIu L2={xl XeLl or xe L2} isaPNL.

(iii)Intersection: IfLI and L2 are PNLs, then

LIc_ L2={xl xeLl and xeL2} isa PNL.

(iv)Reversal: IfL isa PNL, then

LR={xRI xeL} isa PNL.

(v) Concurrency: IfLI and I.,2arc PNLs, then

LtllL2={xlllx21 xle Lb x2e L-z} is a PNL.

(vi) Substitution: If LI is a regular language and L.z is a PNL, then the

result of substituting L1 for a symbol in I-,2 is a PNL.

The reversal operator and concurrent operator used in (iv) and (v) are defined as

(ax)R=xRa, ae _,, X¢ _*;

(aXl)ll(bx:z)=a(xlllbx2) + b(axlllx2), a,be E, Xl, x2e _.*;

It follows from (vi) that PNLs are closed under finite substitution and

homomorphism. PNLs are not closed under indefinite concatenation (Kleene star) and the

general substitution, and the closure under complement for the L-type PNLs is still an

open problem.
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4. The Model for Coordination Level: Coordination Structure
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In this chapter, a formal model, called coordination structure, is introduced to

describe mathematically the information structure and information flow in the Coordination

Level of Intelligent Machines. Section 4.1 presents the framework for Coordination Level

upon which the coordination structure is based. Section 4.2 introduces a new type of

transducer, Petri net transducer, which will be used as the model for the dispatcher and the

coordinators. Section 4.3 defined the synchronous composition of Petri net transducers.

The coordination structure and its operation are described in the section 4.4. The analysis

of the structural properties of the coordination structure is discussed in the section 4.5

4.1 The Framework of Coordination Level

The topology of the Coordination Level can be expressed by a tree sta'ucmre CL

consisting of a dispatcher D, the root, and a finite set of coor&'nators C, the subnodes,

CL=(D,C)

For convenience, let the coordinators be numbered Cl, C2, .... C-,n, n-ICl, in some unique

way (Fig. 4.1). It is assumed that for each coordinator there exists a bidirectional link

connecting it to the dispatcher and there is no direct link between any two individual

coordinators.

The dispatcher D centrally located above all coordinators will deal with the control

and communication of the coordinators. It concerns primarily the questions of which

coordinator(s) should be called when (task sharing) and which coordinator(s) should be

informed by the current status of task execution (result sharing), given a sequence of

primitive events (subtasks) by the organizer for some specific job. The control and

communication can be achieved by translating the given sequences of primitive events into



Dispatcher

D

Fig.4.1 Topology of the Coordination Level



the sequences of coordinator-oriented control actions containing the necessary information,

and dispatching them to the corresponding coordinators at the appropriate times, To this

end, the dispatcher requires the following capabilities.
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•A communication facility that allows the dispatcher to receive and

send information from and to the

coordinators.

• A data processing ability which

information from the Organization

Organization Level and

describes the command

Level and the feedback

information from coordinators, updates the current system status,

and provides information for the decision-making units of the

dispatcher.

• A task processing ability which identifies the subtasks to be

executed, selects the appropriate control processes for the

corresponding coordinators, and formulates the feedback required

by by the Organization Level

• A learning ability that enables the dispatcher to improve its task

processing ability and reduces uncertainties in decision-making

and information processing as more task execution experience is

obtained.

Each coordinator Ci centrally located above all devices associated with it wiU

process the operating and data passing of the devices. The coordinator can be considered

as an expert of deterministic functions in some specific field with the ability of selecting one

among alternative actions that may accomplish the same subtask issued by the dispatcher in

different ways according to the constraints imposed by the workspace model and timing

requirements. The operating and data passing of the devices can be achieved by translating



thegiven coordinator-orientedcontrol actionsequencesinto real-time hardware-oriented

operation sequences containing the necessary data, and sending them to the devices.

Capabilities required by a coordinator are exactly the same as that for the dispatcher, but in

a lower and more specific level. Figure 4.2 illustrates the translation process among the

dispatcher and the coordinators. Note that the dispatcher and the coordinators actually have

the different time scale, one step in the dispatcher may turn out to be many steps in the

coordinators.
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The coordinators have to cooperate under the supervision of the dispatcher in the

sense that no one of them has sufficient ability and information to accomplish the entire

task; mutual sharing of information is necessary to allow the dispatcher and the

coordinators, as a whole, to attack the requested jobs.

The above description also indicates that the dispatcher and coordinators may have

the identical organization at the different levels of specification. A uniform system

architecture, consisting of a data processor, a task processor, and a learning processor, for

the dispatcher and coordinators, is shown in Figure 4.3. This architecture is a direct

extension of the decision module suggested by Graham and Saridis (1982).

The function of the data processor is to provide the information about the tasks to

be executed and the current system status. It has been divided into three levels of

description: task description, state description, and data description. The relation among the

three levels is shown in Figure 4.4. In the task description, a list of subtasks to be executed

from the upper level units is given. The state description presents the preconditions and the

postconditions (i.e., the effects of execution) for the execution of each subtask and the

system status in some abstract terms. In Petri net model, the preconditions and the

postconditions can be described in terms of the input places and the output places,
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Fig. 4.4 Relation among the three Description Levels



respectively. The data description gives the actual value for the abstract terms used in the

state description. Such an information organization is extremely useful for the hierarchical

decision-making, as can be seen next in the task processor. The maintenance and update of

the three level descriptions is manipulated by a monitor based on the information from the

upper level and the feedback of task execution from the next level. The monitor is also

responsible for the interconnection between the data processor and task processor.
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The function of the task processor is to formulate the control command to the next

level. The task processor employs a hierarchical decision-making consisting of three steps:

task scheduling, task translation, and task forrnulation. The task scheduling identifies the

subtask to be executed by checking the task description and the corresponding

preconditions and postconditions contained in the state description without referring the

actual values. If no subtasks can be executed, the task scheduling has to determine the

internal operations which will make the preconditions for some subtasks to became true.

The task translation decomposes the subtask or inter-operation into the control actions in an

appropriate order based on the current system status. Finally, the task formulation

responses to assign the actual data to the control actions by searching in the data description

of the data processor, formulate the final complete control command, and send it to the next

level. With the hierarchical information description, such a hierarchical decision-making

should make the task processing fast and efficiently.

Upon the completion of all subtask required by the upper level, a monitor is called

to organize the feedback information to the upper level in some specified form. The monitor

is also responsible for the proper interconnection with the data processor and the learning

processor.



The function of learning processor is to improve the performance of the task

processor and to reduce the uncertainty in decision-making and information processing.

Information used for the leering processor is indicated in Figure 4.3. Various learning

mechanisms can be employed by the learning processor to achieve its function. A simple

linear refinement learning algorithm is used for task translation in the section 5.2.

24

The fact that the dispatcher and coordinators have the identical system architecture

but at different levels of specification (or abstraction) indicates that the Coordination Level

has a nested tree topology [Meystel 1986]. This nested tree topology can be extended

further to include the Execution Level.

The connection among the dispatcher and coordinators, i.e., the high level

abstraction of commurdcation among them, will be specified in term of a Petri net derived

from thecoordinationstructure,a formal model for theCoordinationLevel developed inthe

section4.4.

4.2 Petri Net Transducers (PNTs)

As has been seen in the above discussion,the basic functionof the Coordination

Level can bc viewed as the u'anslationof the high levelcommand language issued by the

organizerto the low leveloperationlanguage executed by the hardware. Itseems thatthe

automata, likefinitetransducer,pushdown transducer,and syntax-directedtranslation

schemata, etc, used in the translationtheory of formal language [Aho ctal 1972] might

offerus promising toolsfor themodeling of the CoordinationLevel Unfortunately,thisis

not the case in genernally.Firstly,itis difficultto specify the connection among the

dispatcherand coordinators,quitean important issuein the Coordination Level, by using

automata. Secondly, itis inadequate to describe the concurrency of activitiesin the



Coordination Level by using automata, since the primitive notion state in automata is intend

to represent the situation of the entire system modeled at some instance, whereas the notion

of place in Petri net is just to describe the situation of a component of the system modeled.

These two problems can be overcome by Petri net model, since it has been shown in both

theory and applications that Petri net can enable, in a natural way, the specification of

connection among the subsystems and the description of concurrency and conflicmess in

the systems processes. It is this observation leads to the motivation of developing a

translation tool in term of Petri net, called Petri net transducer, as the basic model for the

Coordination Level
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The Petri net transducer is defined as:

Definition 4.1: A Perri net transducer (PNT), M, is a 6-tuple,

M=(N, 5", A, cr, g, F) where

(i) N=(P, T, I, O) is a Petri net with the initial marking g;

(ii) Y_is a finite input alphabet;

(Hi) A is a finite output alphabet;

(iv) o is a translation mapping from Tx(Z_{_.}) to finite sets of A*;

(v) FCR(I.t) is a set of final markings.

A PNT can be pictured as shown in Figure 4.5. There are three parts to a PNT: an

input tape, a PN controller, and an output tape. The behavior of a PNT can be conveniently

described w, terms of configurations of the PNT. A configuration of PNT M is defined as a

triple (m, x, y) where me R(I.t) is the current state (or marking) of the Petri net N; x¢ E* is

the input string remaining on the input tape with the leftmost symbol of x under the input

head; y_ A° is the output string emitted up to this point.
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Fig. 4.5 Petri Net Transducer (PNT)



A move by PNT M isreflectedby a binaryrelation=:_M (or =:_,when M isclear)

on configurations.Specifically,for allme R(B), teT, ae Zu {L },xe Z*, and ye A" such

that8(re,t)isdefined and c(t,a)containsze A °,we write
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(m, ax, y) =:_(8(re,t),x, yz)

We will use =_* to denote the transitive and reflexive closure of =_. Note that the

PNTs defined here allow L-moves and are nondeterministic in both the firing of the next

transition and the emitting of the next output string.

The translation defined by M, denoted x(M), is the set x(M)={(x,y)l (I.t,x,L) =_*

(m,L,y) for some me F}. y is said to be an output of x or x is the input of y iff

(x,y)e z(M). The input language and the output language of M are defined as

and

aflVi)={ xl there exists ay¢ A" such that (x,y)e x(M)}

o._(M)={ yl there exists a xaX* such that (x,y)e'_(M) }

respectively.Like otheru'anslafionmodel, wanslationdefinedby a PNT willbe calleda

Perrinettranslationor Petritransducermapping.

A PNT halts at configuration (m, ax, y) when no transitions for which cr(t,a) is

defined are enabled at the current marking m. We call the m the deadlock marking of the

PNT. When a deadlock marking occurs, the input string will be rejected. Note that a

deadlock marking of PNT is not necessary a deadlock marking of its Petri net.



For anyx=xlaxaux2¢Z* with (g,x,e) _* (m,alaux2,y), symbols al and a2 are said

to be parallel (or in conflict) iff there exist tx and t2 in T such that _(tl,ax) and ff(t2,a2) are

def'med and tl and t2 are parallel (or in conflict) with respect to the marking m. Two

symbols in parallel can be translated simultaneously, however, only one of the two

symbols in conflict can be wanslated and its translation will disenable the translation of the

other.
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Before to PNTs as the models for the dispatcher and the coordinators, we have to

answer a fundamental question first: Can PNTs provide the consistent models for the

dispatcher and the coordinators ? In other words, is there the possibility that the output

languages of some PNTs eannot be further translated by any PNTs. If this is true, then it

may happen that the tasks issued by the dispatcher cannot be processed by any kinds of

coordinators, provided that PNTs are the only models for the dispatcher and the

coordinators.

To answer this question we have to investigate the language properties of PNTs.

For this end. let us consider a special class of PNTs, called Simple PNT (SPNT), with the

property that for any teT there exists one and only one aeXt..:{_.}such that cr(t,a) is

defined. The following theorem indicates the importance of this type of PNTs.

Theorem 4.1: For any PNT M, there exists a SPNT M" such that z(WI')=,(M).

Proof: Let N be the PN of M=(N, X, A, if, _t, F), N=(P, T, I, O). For any te T, if

there exist two different al and a2_ Y.t.o{X} such that both cr(t, al) and _(t, a2) are defined,

we then introduce a new transition t' with I(t')=I(O, O(t')=O(O and modify ¢_in a way such

that cr(t',a2)=cr(t,a2), cr(t',a) is undefined for all other aa Xu{X}, and ¢_(t,a2) is undefined.

Continuing this procedure until no transitions have more than two input alphabet in X; for



which ¢_aredefined, we will finally get a SPNT M'=(N', Y_,A, a', It, F) with N'=(P, T',

I', 0'). The constnmtion of M' clearly shows that x(M')---_(M). Q.E.D.

For a SPNT, we can define a labeling function _3associated with o as
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: T _ELa{X}, 15(t)=a, if o(t,a) is defined.

As in PN language, we have three classes of labeling functions.free labeling

function for which 13(t)*:L, 13(tl)*:13(tT.) if h*:t2; _.-free labeling function for which 13(0_X,

13(tl)#13(t2) if tl_'t2; and _ -labeling function for which no constraints are imposed. For a

SPNT M=(N, _E,A, ¢_, It, F), the labeled PN T=(N, Z, 13, IX, F) is called the labeled Perri

net underlying M.

We classify the PNTs according to the following four types of specifications of the

final marking set F as in PN language.

(i) a PNT is L-type if F is a finite set of markings in R(I.t);

(ii) a PNT is G-type if F={mCR(I±)I rr_>mi for some i, i=l ..... n};

(iii) a PNT is T-type if F=[m¢ R(bt)l m is a deadlock marking of PNTs PN};

(iv) a PNT is P-type ff F=R(ix).

For SPNT there exist 12 classes of PN translations resulting from the cross product

of the four types of the final marking specification and the three types of labeling functions.

In this report we just consider L-type PNT.

Now we can characterize the language property of PNT by the following theorem:



Theorem 4.2: The input and output language of a PNT are both PN languages.
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Proo_ By theorem 4.1, we only need to consider the case for SPNTs. Let M=(N,

Z, A, o, g, F) be a SPNT and T=(N, E, _, It, F) be the labelled Petri net underlying M.

The fact that input language is a PN language follows immediately from the equations

x(M)=L(_').

Let _/'=(N,E, _',It,F) be a labelledPetrinet with a freelabelingfunction

_' and L(_f) be itsPN language. Itis clear that CO(M) can be derived from L(_) by

replacing the symbol [$'(t) in L(T') with any element of the finite set o(t, _'(t)). Since PN

language is closed under finite substitution, it foUows that c0(M) is a PN language.

Q.E.D.

Theorem 4.2 guarantees that PNTs can be used as the consistent models for the

dispatcher and the coordinators. Corresponding to the labelled PN in the standard form, we

introduce

Definition 4.2: a SPNT M=(N, Z, A, cL kt, F) is said to be in the standard form

iff the labelled PN ?=(N, 13,bt, F) underlying M is in the standard form.

As in PN language, we can show that for any SPNT M, there exists a SPNT M' in

the standard form such that x(M')---x(M).

4.3 Synchronous Composition

To describe and specify the cooperation among the coordinators in the task

processing, we introduce the synchronous composition operator in this section. First, we

define inductively the project of a string x on a language L by
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(xa)TL=

undefined, if XTL_ L'

(xTu)a, ff a_ X

XTL, if a_ X

where STL denote the project of s on language L, Z is the alphabet of L, and L' is the

closure of L, i.e., L'={xl there is a yeZ* such that xye L}. The synchronous composition

isdcfmcd as

Definition 4..3: The synchronous composition of two PNTs

Mx=(N1, Z1, A1, ol, gl, F1) and M2=(N2, Z:, A2, ¢32, I.t2, F2)

with

PInP2=¢_, TlchT2._, and Zlc'_---_b is a PNT M, denoted by

M=MIIIM2, M-=(N, Z, A, or, g, F) where

P=PI_JP2, T=T1uT2, Z=ZtuZ:, A=A_t,.)A2,

If(t),te TI Ol(t), tET1

I(t)= o(0=

I2(t), te 1": o2(0, te T2

¢s(t, a)=

ol(t, a), if (t,a)e TtxZ1

cr2(t, a), if (t,a)e T2xZ2

undefined, otherwise,

gl(P), pe PI



g(P)=

g2(P), P(_P2
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and

F={me R(I.t)l re=role FI for pe P1 and m=m2e F2 for pe P2};

A move by M=MtlIM: can be represented as

(mb m2, ax, y) =_

(_(mbh), in:, x, yzD, ae 2:1

(mb 8(m2,t2), x, yzz),

where zle Ol(tl, a) and z2e _2(t2, a).

ae Y/z

Synchronous composition for the case of Xl_ involves a complex definition

for the PN of the composition. But it is easy to describe the composition in this case in

terms of configurations by defining

(ml, m2, ax, y)

(8(ml,tl), _(m2,t2), x, yzlz2), or

(8(ml,tl), 5(m2,t2), x, yz2zl)

when ae XtnX2, where zle O'l(tl, a) and z2e cr2(t2, a).

result:

By doing induction on the length of a string, we can prove the following important

a(MIlIM2)=a(Mt)Ila(M2)

where the operator" II " on the right side of the equation is the concurrent operator of two

languages defined at the section 3.2.
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Note thatot(MlllM2)=ot(M1)lla(M2) isnot truefor the case ZIc_Z2¢.@. However,

we have

o_(2VilllM2)= {xixSa(M1)e ot(M1)and xSa(M2)¢ a(M.,z) }

when ZtnZ.2#:¢.

The synchronous composition can be extended tomore than two PNTs by defining

MI{IM2{[...{[Mk.I{[Mk_-(MI{[M2}{.**{[Mk_I)[{Mk

4.4 The Coordination Structures (CSs)

Now the model for the Coordination Level of Intelligent Machines is defined as:

Definition 4.4: A coordination structure, CS, is defined to be a 7-mple,

CS----(D,C, F, RD, SD, Pc, Sc) where

(i) D=(Nd, T-.o,Ao, _d, gd, F:d)isa PNT, calledthedispatcher,with

Nd=(P d,T d,Id,Od) and Ao= AIUF-.c, Y--_=_i=igic;

(ii) C={C1,C2, .... C-n} is the set of coordinators, rt_.l. Each coordinator is

a SPNT

N i .pi Tic, i i "Ci=(yic ' _i A i i i gic)with c=( c' O_)c' CJ O'c__J'c' c'

i '
in the standard form except there is a transition t_'_c, called the final

i i i i i i pisand itransition of Ci with oic(t_,X)=_, such that I_(t_)=pf and O_(t_)=ps, pf

are the start and thefinal places of Ci, respectively. It is also assumed that



i_j, i,j=l, ..., n;
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(i/i) F---_i=l [_. _I' rio, _o} is the set of connection points: _ is called the

input point of Ci, fisi the input semaphore of Ci, _o the output point of Ci,

and _so the output semaphore of Ci;

(iv)RD and SD are mapping from Td to finitesubsets of F, called the

dispatcherreceivingand sending mapping, respectively.RD and So satisfy

thefollowingconnectionconstraints:

(a) (t, _)e SDC:_(t, _Sl)eRD: which means thatin order to send

informationtocoordinatorCi,the dispatchershould check the input

semaphore _sIfirst;

(b) (t,fio)eRDC:_(t,_sO)e SD: which means that afterreceiving

information from Ci, the dispatcher should reset the output

semaphore _so"

(c) (t,_)e RD and (t,_so)e RD: which means thatthe dispatcher

cannot receiveinformationfrom coordinators_rough _ and _so;

(d) (L _o)e SD and (L _Sl)ESD: which means thatthe dispatcher

cannot send informanon from coordinatorsthrough _ and _sl;

(e)if(t,_o)eRD then tisnot initiallyenabled and thatin any fning

sequence which enables t,the number of the transitionst'with (t',

_)e S D is greater than the number of the transitionst'with (t',

_o)e RD: which means thatbefore for a transitionto receive the



execution result from a coordinator, there have to be other

transitions activate the coordinator by sufficient times.

(f)for any _ and _o, thereexistst,t'_Td such that(t,_)e SD and

(t', f_o)a RD: which means every coordinator is connected with the

dispatcher bidircctionaUy;

T , n ,_i(v) Rc and Sc are mapping from c=,..,,i=llc to f'mite subsets of F, called

the coordinator receiving and sending mapping, respectively. Rc and Sc

satisfy the following connection constraints:

(a) (t, _o)E Sc_(t, _so)a SD: which means that in order to send

information through the output point, transition t has to check

the output semaphore _o first;

(b) (t, fio)_ Rc and (t, flsi)_ Re: which means that the

coordinators cannot receive information through _o and _sI;

(c) (t, _)e S c and (t, fiso)e Sc: which means that the

coordinators cannot send information through _ and _so.
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Figure 4.6 gives the configuration of the coordination structures. The input alphabet
i

_'-0, l_ie, and the output Ae, i=l ..... n represent the set of the primitive events, primitive

control actions, and primitive operations defined at the Organization Level, Coordination

Level, and Execution Level respectively. AI is the set of the internal operations in the

dispatcher. Each coordinator is associated with four connection points, called input point,

input semaphore, output point, and output semaphore, respectively. The notation of

connection point is similar to the concept of port in network theory, which has been used
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Fig. 4.6 The Coordination Structure



in the dismbuted sensor systems If.Lee and Goldwasser 1985, Durrant-Whyte 1987] and

the manufacturing process [Heukeroth and Nour Eldin 1988]. Specifically, a token in the

input point of a coordinator indicates that a task has been issued to the coordinator, and the

token also contains the necessary instruction (ordered coordinator--oriented control actions)

and information for the task execution. The dispatcher can send a task execution command

to a coordinator only ff there is a token in the input semaphore of the coordinator, that is, a

token in the input semaphore indicates the coordinator is available for the task execution. A

token in the output point of a coordinator indicates that a task has been completed by that

coordinator, and feedback information of task execution is contained in that token. A

coordinator can send feedback of task execution to its output point only if there is a token in

the output semaphore of the coordinator, which implies that the communication facility is

ready for information transferring between the dispatcher and the coordinator. Once the

corresponding transitionin the dispatchertakes the feedback information from the output

point,itwillresetthe output semaphore, by the connection constraints(or connection

protocol)imposed.

35

The behaviors of the dispatcher and the coordinators are specified by the transition

sequence sets L(Nd, P.d) and L(NXc, I.tJc), i=1 ..... n, respectively. As in program

verification, where the behavior (all possible routine sequences) of a program is used to

prove the correcmess of the program and guide the implementation, the transition sequence

sets L(Nd, lad) and L(N_, IxJc) can be used for designing, analyzing, and implementing or

simulating the models for the dispatcher and the coordinators. Let us define

"_d= {t IteTdand (t, _)e SD}, i=l ..... n

then, in order for the coordinator Ci to process the tasks from the dispatcher, the following

relationship has to be satisfied
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ot(C0_ _J{Od(t,a)Tcrid), I ta Tid and ae Zo}, i=1 ..... n

that is, the coordinator Ca should be capable of processing all the possible task strings

issued from the dispatcher. This relationship is guaranteed being able to be satisfied by the

closure property of PNL under the union operation and the theorem 4.2.

The connection among the dispatcher D and coordinators Ci is the abstract

specification of the actual communication facilities among the dispatcher and coordinators.

It is clear that coordinators are not allowed to communicate with each other directly, since

Rc(Tic)r_Sc(TJc)=¢, i_j by the connection constraints imposed in the definition of the

coordination structure. It should be noted that various complex connection patterns can be

defined by using different receiving and sending mappings. One of the most basic

connection patterns can specified as: (i) a coordinator can only access to its own input point

and output point, and input semaphore and output semaphore; (ii) only one of the initially

enabled transitions of a coordinator can receive information from its input points; (iii) only

the final transition of a coordinator can send information to its output point. A coordinator

structure with this type connection pattern is called a simple coorda'nation structure. We will

concentrate on the simple coordination structure in this repo_

To describe the operation of the coordination structure CS, we first define the Perri

net underlying the CS as N=(P,T,I,O), where

n i
. pi Tc =Ui=lTc;P=Pd U F k/PC, T=Td u Tc, Pc = k/i= 1 C'

I(t)=

Id(t) k/ { fl(t,f)a RD }, t_ Td,

i
lie(t) k/ {fl(t.f)_ Rc }, te Te;
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O(t)=

Od(OU {fl(t,Oe $D}, te Te,

O_(t) u {f1(t, Oe Sc}, te Ti=.

The initial marking of N is defined to be

g(p)=

i
I_(P) or gc(P), if pePd or pe pi

C _

1 ifP=_sI or _o,

0 otherwise

To start operation, the CS first receive a string in the task command language Lo,

i.e., a sequence of primitive events, from the Organization Level and puts it on the input

tape of the dispatcher D. The dispatcher D then begins the process of translating (or

dispatching). Once a transition t of D with 1..... _s as its output places in F is fired with

respect to the current marking of the underlying PN N to execute the primitive event a, it

will send the selected control action string ze crd(t,a) to each of input tapes of the

coordinators Cit C and cause them to operate synchronously, that is, activate the' "'" is'

synchronous composition Cilll - • • IlCis to operate. Upon the completion of a subtask by a

o

coordinator Cik, if the final transition _k is enabled with respect to the current marking of

N at the time, it will fire by removing the token from p_k and _s_ and displacing a token to

pisk and fi(_. C ik becomes idle again and the execution result (feedback) is sent to the

output point, which will be taken by the dispatcher to continue the process. Otherwise, if

ttfk is not enabled, Cik has to wait until the output point _ (i.e., the communication facility

for C ik ) is available, since by the definition of the standard form SPNT, no other

ik
transitions in C ik can be enabled before t_ removes the token from pf. Once the



configurationof D reaches (rod,_ y),rodeFd, and the configurationsof the coordinators

are either(l.tic,L, yic)(which means the coordinatordoes not perform taskfor a while) or

• i
(mic,L, yic),m_ceFc,the entiretaskprocess iscompleted successfully,and the requested

job isaccomplished.

A stringse Ao issaid to be executable by the CS if(l.td,s,L):::_'(m,L, y),me F d

and the finalconfigurationof each of coordinatorsiseither (l.tic,L, yic) or (mic,L, yic),

mic i
F e. It should be pointed out that not every string in co(D) is executable by the CS,

because the additional connection restrictionsimposed by the receiving and sending

mappings. However, we can prove thata transitionenabled inNd afterfinitestepfiringcan

alsobe enabled in N afterthe same stepsof ffu-ing(generallyby a differentpath,however,

see theproof of theorem 4.4).In any case,ithas to be guaranteed thatevery stringin Lo (a

subsetof c_(D))shouldbe executableby CS during itsdesign phase.
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The L-move (the f'wings of transitions caused by ¢:_(t,L)) have the special physical

significance. They may represent the internal operations occurred in the dispatcher or

coordinators which are activated to provide the necessary information or resource for the

continuityof thecoordinationprocess.

Clearly, the underlying PN N specifies the precedence relation among the activities

in the dispatcher and coordinators and therefore defines the information structure of the CS.

From the point of view of abstract execution of PN N, the swing issued by the Organization

Level can be considered as a path specification in the PN Nd, and, in turn, the string

selected by the dispatcher D can be thought as the path specification in the PNs of the

corresponding coordinators. This fact reveals once more the nested structure aspect of the

Coordination Level modeled.
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4.5 Some Structure Properties of the Coordination Structure

One of the merits offered by the above Coordination Level model is that the

underlying PN N enables us to use the PN concepts and analysismethods to study the

structure properties of the Coordination Level, such as livcness, boundcdncss,

reversibility,consistency, repetitiveness,etc.The following two theorems present the

resultsabout the boundcdncss and livcncssof theCoordinationLevel.

i
Theorem 4.3:The PN N underlying CS isbounded (safe)ifallthe PNs Nd, N c,

i=l, ..,n are bounded (safe).

The proof isvery simple.By the definitionof receivingand sending mappings, for

any me R(N,g.),m(p)_<1 ifpe F. Clearly,the PNs Nd, Nic,i=I....n arc closed subnets

of PN N, itfollows immediately thatthe restrictionof R(N,_t) on Pd isa subset of R(Nd,

i R(Nic, i) Therefore, theP-d) and the restrictionof R(N,_) on Pc is a subset of ).tc .

i
boundcdness of Nd, N c,i=l....n guarantees the boundcdness of thc underlying PN N.

The claim isalsotrueforsafeness.

The boundedncss of the underlying PN guaranteesthe structurestabilityof the CS.

Itcan be shown, however, thatfor a PNT M with a bounded PN, wc can dcf'mc an

equivalent finitetransducer M' using the rcachabilityset of the bounded PN such that

'_(M')----x(M). This implies that the input and output languages of the bounded PNT are

actually the regular languages, which indicates that the language complexity of PNTs with

bounded PNs is very simple. Therefore, for some cases, the unbounded PNTs are required

in the coordination structures.
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Theorem 4.4:The PN N underlying CS isliveifallthe PNs Nd, N_, i=1, ..,n

arc live.

Proop. Considering that for every coordinator Ca there exists at least one transition

in Nd which takes _ as its output place in F, and that only the initially enabled transitions in

i
N e take _ as their input place by the def'mition of the simple connection pattern, we only

need to show that Nd as a subnet of the underlying PN N is live in order to prove N is live.

Let me R(N,p.) be an arbitrary marking, R(N,m,k) be the set of markings reached

from m by firing at most k transitions in Td, md and R(N,md,k) be the restrictions of m and

R(N,m,k) on Pd, and R(Nd,md,k) be the set of markings reached from md by firing at most

k transitions when Nd is considered as an independent PN. Let T(k) and T'(k) bc the sets

of transitions in Td which arc enabled under R(N,m,k) and R(Nd,rnd,k) respectively. We

claim that

R(N,md,k)=R(Nd, md,k), T(k)=T'(k)

When k=0, R(N,md,k)=md=ROWd,md,k), and, obviously, T'(k)_T(k). Let te T'(0)

be an enabled transition. If (t, _o)e RD for all i, then it is clear that t is also enabled by m, so

te T(0). If (t, fio)e RD for some i, then by the connection constraint (e) of (iv) in the

definition 4.4, that in any f'ning sequence which enables t, the number of the transitions

which activate Ci is greater than the number of the transitions which take the execution

result from Ci, there should be tokens in _o in the marking m, so t may fire under m.

Therefore, tE T(0), hence T(0)_T'(0), T(0)=T'(0).

Assuming that R(N,md,k)=R(Nd,md,k), "I"(k)=T(k), for k_<q. R(N,md,q+l) =

R (Nd,rnd,q+ 1) follows immediately from T' (q)=T(q). Since T'(q+ 1)_T(q+ 1), by the same



argumentused in the proof of T(0)=T'(0), we can show that T(q+l)_T'(q+l), therefore

T(q+l)=T'(q+l).
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Since Nd islive,every transitionispossibleto firefrom md in Nd. From R(N,md,k)

=R(Nd,md,k), T'(k)=T(k) forany k, wc scc thatthe same transitionisalsopossible to fire

from m through the same number of firingsof transitions.Therefore,N islive. Q.E.D.

Even a transitionin Td can be enabled through the same number of Fmngs of

transitionsof Td in both PN N ans Nd from the same making. However, the firing

sequences in N and Bidmay be different.Especially,two transitionsin Td areparallelin Nd

may no longerbc parallelin N, sincetheymay requireinputsfrom the same coordinators.

For the construction of coordination structures,the methods of building the

bounded and livePctrinet models formanufacturing systems willbc very useful.The step-

wise refinement approach developed by Valctte(1979),Suzuki and Murata (1980, 82-83),

Zhou, DiCcsarc, and Dcsrochcrs (1988), as wcU as the hierarchicalreduction analysis

methods by Hyung ct al (1985, 87) and Soog ct al (1988) can bc easilyadapted for

constructingthe bounded and livePctrinet models for thedispatcherand thecoordinators.
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5. Decision Making in Coordination Structure

We now investigate the problem of task scheduling and translation in the

coordination structures. Section 5.1 describes a simple scheduling procedure based on the

execution rule of Petri nets, and Section 5.2 presents a probabilistic method with learning

for the task translation.

5.1 Task Scheduling

Task scheduling in the Coordination Level is the process of identifying the

appropriate subtasks to be executed to complete the task issued by Organization Level In

CS model of Coordination Level, since the dispatcher and coordinators process their tasks

simultaneously, the problem of task scheduling has to be dealed with distributedly. The

task control for a special class of processes using the standard execution rule of Petri net

has been studied by Komoda et al (1984), Murata et al (1986), and Crockett and

Desrochers (1987). In the sequel we present a uniform scheduling procedure for the

dispatcher and coordinators based on the execution rule of Petri net.

Let M=(N, 22, A, _, It, F) be a PNT representing the dispatcher or a coordinator.

For any a¢ X;, we define

T(a)=[t I c(t, a) is defined}, Tx=T(_.)={t I _(t, 7L) is defined}.



Two queues, QT and QD, are used to in the scheduling procedure to record the task

processing. QT stores the unexecuted subtasks, and QD the subtasks which are delayed to

be executed due to that the transiuons processing them are not be enabled at the appropriate

time. Let First(Q) be a function which returns the first element of Q and deletes this element

from Q meanwhile, Insert(Q, a) be the function which inserts a to Q at the end of Q,

Union(Q1, Q2) unifies Q1 and Q2 by placing the content of 02. at the end of Q1, and

Null(Q) empties Q.
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Let v-ala2...as_ A* be the task string to executed, the scheduling procedure for M

can be described as:

Scheduling Procedure:

1. QT:={al, a2, ..., as}, QD:-_ ;

2. IF QT is empty "II-tEN STOP;

3. u:=First(QT);

4. IF there exists a t_ T(u) and t is enabled THEN firing t, GOTO 7;

5. IF there exists a X-move firing sequence e_ T_.* such that ate T(u) is

enabled by firing e THEN firing et, GOTO 7;

6. Insert(QD, u), IF QT is empty THEN Qr:=QD and Null(QD), GOTO 2;

7. IF QD is not empty THEN QT:=Union(QT, QD) and NulI(QD) , GOTO 2.



In the above scheduling procedure, each subtask is examined in the order which

appears in the task string v. If the subtask is executable (i.e., an appropriate transition is

enabled) at the time, it will be executed. Otherwise an effort is made to find a sequence of

internal operations which will lead the subtask to be executable. If the effort fails again, it

will be removed from the task queue QT to the delayed queue QD. Once there is a change in

the state of PNT M, all the delayed subtasks in QD will be moved back to QT in their

original order and be examined again, since it is desired to keep the subtask order as

specified as much as possible. The scheduling procedure will terminate in a finite amount

of time since it assumed that the task strings issued arc compatible and complete.
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There are various methods can be employed to find the L-move sequence required

by the fifth step in the scheduling procedure. For a large and complex PNT, the heuristic

search algorithm discussed in [Passino and Antsaklis 1988a and b] may be used. For a

bounded, average size PNT, however, the simple breadth-first search along the rcachability

tree of the PNT obtained by f'tring the only the L-move transitions under the current

marking can serve the purpose quite well.

The time factor is not explicitly considered in task scheduling. Some difficulties and

optimization problems, like starvation and load balancing, may be raised when the time

factor is included. In that ease, methods developed for scheduling in Operation Research

may be required [Shen 1988].



Whenapplyingtheschedulingprocedure to the dispatcher or coordinator, it should

be remembered that the enabled condition of a transition is with respect to the underlying

Petri net N as defined in 4.4, not to its own Petri net. In other word, the condition of the

connection points have to be considered.
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5.2 Task Translation

Once a subtask is located to be executed by an enabled transition during the task

scheduling, the firing of the transition is actually the process of decomposing the subtask

into an ordered control actions and then, after assigned with rea-time data (task

formulation), executing these control actions (for the internal operation) or sending them to

the corresponding unit in the next level. This phase of task execution is the task translation.

Task translation is in general very large and difficult problem in the coordination of

Intelligent Machines. For a given transition, the associated task translation could be one of

the major issues in the corresponding research area (e.g., pattern recognition in the vision

and sensor coordinators, path planning and control algorithm in the motion coordinator, for

an intelligent robotic system). The translation problem can be solved in either an active

fashion or a passive fashion. In the active approaches, the translation of a subtask is

formulated on-line based on a set of rules and a data base which describes the related

environment and system status information. The structural formulation of plan generation

suggested in [Wang and Saridis 1988b] can be used in this case. In the passive approaches,

a fixed number of translations for a subtask are pre-specified and the translating is to



choose one of them according to the current situations for the subtask. The probabilistic

methods are probably the most appropriate way to implement the passive task translation.

Note that one of the major difference between the active and passive task translation is on

the knowledge representation, the knowledge in the active task translation should be

represented declaratively, and on other hand, the knowledge in the passive task translation

should be represented procedurally. For a PNT, the active or passive translation is

indicated by the way how the translation mapping (_ is generated.
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In order to avoid the discussion of task translation in too much detail, we will

concentrated at the passive task translation in the following investigation. Assuming a fixed

number of translations are available for each translation, we use the probabilistic method

with learningabilitydeveloped by Saridisand Graham (1984) tochoose the besttranslation

fora subtaskina particularsituation.

Let tbe a transition of a PNT M=(N, Z, A, ¢_,g, F) representingthe dispatcher or

a coordinator. The number of translations designed for t is

Mt= E Io(t, a)l, or(t, a) is defined for aeY_{_.}.
&

Let xt represent the state and feedback information contained in the input places of t

(xt can be interpreted in terms of colors of tokens) and utE Ut={ae ZuJ{X}lcr(t, a) is

defined} represent the subtask to be translated by t. A situation is defined to be a



combination of xt and ut,i.e.,(ut,xt).The number of situationdistinguished by t is

designated as Nt.

t t

Now consider a matrix of subjective probabilities, (Pij)MtxNt, such that Pij is the

subjective probability of choosing the translation si when the situation (ut, Xt)j is ob.s_fved.

The subjective probabilities satisfy the constraint,
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M,

i=I

for all j=l ..... N c

The decisionruleof the probabilisticmethod forchoosing a translationis

Decision Rule: When situation (ut, Xt)j is observed, choose a

translationsiusing a random strategywith the subjectiveprobability

t

Pip i=I, ...,Mr.

A random perform index or cost function is associated with each translation. After

the execution of the control action specified by si for situation (ut, x0j, compute the

performance index Iij, and update the performance estimate using the following algorithm,



Performance Estimate Update Algorithm (P EUA ):
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J" ij(nij+l) -_" ijCnij) + _nij+l)[Jobs(nij+l) - J ijCnij)]

where

Jobs observed performance value,

performance estimate, and

nij number of times the event ((nt,xt)jgi) has occurred.

After updating the performance estimate, update the subjective probabilities for i=1,

.... Mt and the given j by the following algorithm,

Subjective Probability Update Algorithm (SPUA):

where

1,ifY..=mm
u t lj

_ij(k)--

O, otherwise.

Two theorems are now stated describing the convergence properties of these

algorithms.

Theorem 5.1" If the 13(nlj) of PEUA satisfies Dvoretsky's convergence



con_dons
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li m_(k) = 0,

k=l

k= 1

then

_{_m [3 ij(k) - i i)--0}=l
k-*--

where/I ij is the expected value of Jij"

Theorem 52: If the [3(nij) of PEUA satisfies Dvoretsky's convergence

conditions in Theorem 5.1, and the 7(k) of SPUA satisfies

Dvoretsky's convergence conditions

li m_k) = 0,
k--,--

k=l

k=l



then for all i and all j such that J .. ---mill

t

Pr[ lira pij(k) = 1] = 1

lj

5O

and for all other i and j

t

Pr[ lira p_j(k) = O] = i .

This theorem establishes the convergence of the learning algorithm under very

general plant conditions. The proofs for the two theorems were given in [Saridis and

Graham 1984].

Assuming that the initial performance estimates for a transition t are available, we

can find the most conservative initial subjective probabilities by Jaynes' Maximum Entropy

Principle [Jaynes 1968] as

.j.o.
0 e

Pij = Z_

the partition function 7_.j(a) is defined to bc

M_ o

Zj(a) = Z e'dii
i=l

and the parameter o_satisfies the constraint



t

ij -- j '
i=l

where pO arv the initial subjective probabilities, and _j are the initial l:)¢rformanc¢ estimates,

and Jij is the initial avvrag¢ performance estimate at the jth situation. When

M,

o
_'.0__ i=l

J M t

we have

o yo..
ij

Pij = M_

kj
k=l

i=1 ..... Mr, j=l ..... Nt.
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The learning process can be measured by the entropies associated with the

subjective probabilities. For a PNT M, its translation uncertainty is defined to be the total

entropy of subjective probabilities assigned to the transitions of M, that is

and

H(M) -- E H(t)
t_T

H(t) = H(u t, xt) + H(t/u t, x t)

wh_e



j-1 j--I
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where p]istheobjectiveprobabilityof (ut,xt)jocurring.

N t Mt

j=1 i=i

= -Z Pl Z ptijlnptij

j=l i=l

then

Dc'flnc

_T teT

H(M) = H(E)+ HG/E)

This expressionof H('M) indicatesthatthe translationuncertaintycan bc divided intotwo

parts:the environment uacertainryH(E), caused by thc uncertaintyof thc environment

(includethe uncertaintyin taskassignment); thepure translationuncertaintyH(T/E), the

uncertaintyintranslationgiven the environment. Clearly,the learningabilityof thePNT M

cannot reduce the environment uncertaintyH(E), but thc pure translationuncertainty

H(T/E) can bc rcduccd. Note thatH(E) specifythe lowest bound of the totaltranslation

uncertainty,which can be achieved through the learningsincc the Icarningconvergence



theorem 4.2 guarantees that the pure translation uncertainty can be reduced to zero by

learning process.
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The average execution cost estimate of the PNT M is

tcT

where

J(t)=_Ptj_ptijJ" ij

j=l i=l

For the whole coordination structure, we have

H(CS) = HfEcs) + H(Tcs)

where
N

H(Ecs)=H(E D) + _ HOEc i)
i=l

N

H(Tcs)=FI(T D) + _ H(Tc i)
i-- I

The decision making mechanism of the whole coordination structure bears the

characteristics of the embedded decision schema def'med in [Saridis and Graham 1984].

The learning process of the whole coordination structure also has the similar structure as



that of the hierarchical learning automata [Mandyam et al 1981, Baba 1987]. For the case of

the small number of situations, the learning by recording the conditional probabilities under

specific situations will not cause the serious problem in memory space and learning speed.

As the number of situations and the task to be processed increasing, however, the problem

of memory space and learning speed becomes more and more serious. For the case of the

larger number of situations, the patzem-recognizing learning algorithm developed in [Barto

and Anandan 1985], which avoids the maintenance of separate selection probabilities for

each situation by parameterizing the conditional probabilities and constructing a mapping

from the situations to the parameter, should be used.
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A note is in order concerning the case when the pure wanslation uncertaimy of a

PNT is reduced to zero. In this case, the optimal n'anslation is founded for all transitions in

the PNT. However, this does not necessarily imply that a global optimal translation is

achieved for the PNT in general, simply because that the opumal translations of a u'ansidon

might cause the worse situations for the subsequent transitions, thus increase the mml task

execution cosL To achieve the global optimal translation, it is imperative to specify the

influences of the translation of a transition to others, and use a learning algorithm based the

global information. However, an analytical expression for such influences may be too

complex to be established for transitions with quite d/fferent functions. If some appropriate

forms for such influences are obtained, a team-theoretic formulation for the global optimal

translation might be develope.d.



A PNT with the smaller pure translation uncertainty indicates the PNT is more

knowledgeable in task execution. Since learning from the execution can reduce the pur,

translation uncertainty, learning can make a PNT more knowledgeable about task

execution.This observationrevealsthatthe decision-makings in the Organization I.,cvcl

and Coordination I..cvelbear "dual" character: on one side, the dccisions made in

OrganizationLevel have tomake thedispatcherto accomplish therequestedtaskwith some

optimizationcriterion,on the other side,thcsc decisionsshould alsomake the dispatcher

more knowledgeable about the taskexecution in thefutureby reducing itspure translation

uncertainty.Similarly,the decisionsmade in the dispatcherhave to make thecoordinators

to accomplish therequcste,d taskwith some optimizationcriterion,on theother side,these

decisionsshould alsomake the coordinatorsmore knowledgeable about thetaskexecution

in the futureby reducing theirpure translationuncertainty.To reduce the cost,only the

subtasks with the minimum costs should be selected;To reduce the uncertainty,the

subtasks with the largeentropy should bc tried.The trade-offof the two sides should be

judged by some criterion.
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6. A Case Study
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In this chapter we present a case study for an InteLligent Manipulator System by

building a simple coordination structure for the Coordination Level consisting of a

dispatcher, a vision coordinator, a sensor coordinator, and a motion coordinator, and

simulating the task process on the model. The investigation here serves only for the

illustrative purpose and the model constructed does not exhibit fully the real expression

power of coordination structure, since both the dispatcher and the coordinators are

oversimplified and concurrency is not involved. The first section of the chapter gives the

PNT models for the dispatcher and the coordinators, and the overall structure of the

Coordination Level The second section shows the simulation results of the task processes

for the corresponding PNT models and the whole coordination structure.

6.1 The Petri Net Transducers and the Coordination Structure

This section describes the individual PNTs for the dispatcher and coordinators at

first, and then integrates the PNTs by specifying the corresponding receiving and sending

facilities to form the final simple coordination structure for the Coordination Level. We start

f_om the dispatcher.

6.1.1 The Petri Net Transducer for the Dispatcher

A. Petri net Model: The Petri net model for the dispatcher, given in Figure 6.1,

consists of 8 places and 10 transitions. A transition generally represents an algorithm for

some specific task and a place generally represents some specific process. For the

dispatcher, these places and transitions axe specified as follows:
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Fig. 6.1 The Petri Net for The Dispatcher



Places:

Pt: initialization process;

P2: gross environment sensing process;

l_: arm motion process;

p+: arm motion v=ification: check whether or not the desired location of

upper arm is achieved;

Ps: fine environment sensing process;

P6: hand motion process process;

l_: hand motion verification: check whether or not the specified object is

grasped or putted down on the desimzi location ;

los: task verification: check whether or not the specifi_ task is

completed.

Transitions:

tl: issuing commands for the gross environment sensing

t2: receiving the gross environment sensing information from the

coordinators and issuing commands for upper arm motion;

t3: receiving and verifying the motion execution result from the

coordinators;

t,,: renaming to the initial place Pl because the failure of the motion process;

ts: issuing commands for the fine environment sensing;

hs: receiving the the fine environment information from the coordinators and

issuing commands for hand motion;

tT: receiving and verifying the hand motion execution result from the

coordinators;

ts: returning to the arm motion verification place P4 because the failure of

the fine motion process;

tg: starting the task verification;
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tlo: continuing the task process.
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B. Task Translation: The input alphabet, i.e., the set of the primitive events from the

Organization Level, is assumed to bc Zo={eb e2, e3, c4, es}, where

el=Dump, e2=Grasp, e3=Fill, e4=Move, es=Camera

arc defined based on the example given in [Valavanis 1986].

The output alphabet, i.e., the set of the coordinator-oriented control actions for the

coordinators is Ao= Zc= AIU_U_UY-.m, where AI is the set of the internal operations of

the dispatcher, and T.,, T-s, T-.mare the input alphabets for the vision coordinator, the sensor

coordinator, and the motion coordinator, respectively. We assume that

A1={il, ig,i3,i4,is,i6},

Z_,={vl, v2}, Zs={sb s2}, F-.,={mt, m2, ht, h2}

where

it-theprocedure forverifyingthe arm motion execution,

i2=theprocedure forpreparationof m-executing the arm motion,

i3=theprocedure forverifyingthe hand motion execution,

i4=thcprocedure forpreparationof re-executingthe hand motion,

is=theprocedure fororganizingthefeedback for the OrganizationLevel,

i6=theprocedure forcontinuingthetaskexecution;

and the vi's,si's,as well as mi' and hi'sare instructionsto the vision,the sensor,and the

motion coordinators, respectively, and will be dcfined in the descriptions for the

corresponding coordinators.

The translation mapping Od for the dispatcher is specified as

<rd(t6, et)=Crd(t6, e2)=Crd(t6, e3)={htst, hls2, hxsl, hxs2, hi, h2},

Gd(t2, e4)=Od(t2, _.)={mlVl, mlv2, m2vl, m2v2, ml, m2},

Od(t], es)=Od(tl, L)={Vl, v2},



¢Sd(tS,eS)=Cd(tS, _,)={VlSl, V2Sl, VlS2, V2S2,Sl, S2},

ad(t3,X)={il}, ad(t4,_.)={i2},ad(tT,X)={i3),

CYd(tS,_.)={i4},(Yd(tg,_)-'{i5},ad(t10,_.)={i6}.
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C, Operation nroeedure: Once receiving a task plan from the Organization Level, the

dispatcher will issue one of the two control strings v I and v2, according to the information

coded in the tokens of the initial place Pl and the task plan, to the vision coordinator by

firing transition tl. Upon the completion of the vision process, there will be) a token in

output point of the vision coordinator, which contains the gross information about the

environment. Now the transition t2 is enabled, and the motion coordinator is activated

through the firing of transition t2 to move the upper arm to the designed position.

Transition t2 selects the control command among {mlVl, relY2, m2vl, m2v2, ml, m2}

based on the information contained in its input tokens. The first four control strings of t2

need the visioninformation for the execution verification,and the lasttwo only use the

feedback from the motion coordinator.When the arm motion process is completed,

according to theresultof theexecutionverificationcan-ledout by t3,eitherthe finesensing

transitiont5isf'n-ed.,ifthe arm motion issuccessful,or transitiont_isfiredto re-execute

the arm moving task,ifthe arm motion isfail(by a certaincriterion).Transitiont5can pick

up one of the control commands among {vlsl,v2sl,vls2, v2s_,sl,s2}.The firstfour

controlswingsof t5involved thecooperationbetween the visioncoordinatorand thc scnsor

coordinator,however, the lasttwo only use the sensorcoordinator.After thecompletion of

the fine sensing process, transitiont_can be firedto invoke the morion coordinatorfor

hand motion, e.g.,to grasp or put down, toopen or close some thing.Like t2,transition

also has six altcmativcs,{hlSl,his2,h2sl,h2s2,hl,h2}, for itstask execution, with the

firstfourneed the sensor informationfor the cxccution verification,and the lasttwo only

use the feedback from the motion coordinator.The resultof the hand motion vcrification,

processed by transitioniv,willenable the next two transitions,t8and tg.Thc succcssful



process leads to the firing of re, otherwise, of ts, which may further lead to the firing of t4

if the desired hand manipulation can not be achieved by the current upper arm location.

Finally, the task verification transition re will decide whether or not the whole task plan is

completed. If the task plan is achieved, the dispatching process will be ended up by

forming the execution feedback required the Organization Level, otherwise, transition q0

will be fir_ to continue to the execution process for the remained subtasks.

6.1.2 The Petri Net Transducer for the Vision Coordinator
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A. Petri net Model: The Petrinet model for the visioncoordinator,given in Figure 6.2,

consists of 5 places and 9 transitions.As for the dispatcher,a transitiongenerally

represents an algorithm for some specifictask and a place generally represents some

specificprocess.For the visioncoordinator,these placesand transitionsarc specifiedas

follows:

Places:

Ps:the startplace;

PI:initializationprocess;

P2:fcann'cextractionand identificationprocess;

I_: image fusionprocess;

pf: thefinalplace.

Transitions:

is:initializingthevisionsystem;

q: calibratin_

t2: taking picture and performing feature extraction and identification;

t3: returning to the initial place Pl because the failure of fcamrc extraction

and identification;
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Fig 6.2. The Petri Net for the Vision Coordinator
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t4: performing the image fusion to obtain the required information, like

location and orientation;

ts: returning to the initial place Pl because the failure of the image fusion;

t6: finishing the vision process;

tT: acknowledging the failure of the vision process;

tf. reporting the visual information and resetting the vision input semaphore

and the start place.
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B. Task Translation: The input alphabet is assumed to be Y-_,={Vl, v2}, where

vl=the minimum-error vision proeedure,

v2=the rain/mum-time vision procedure.

The output alphabet A,, of the vision coordinator consists of the internal procedures

and the hardware-oriented operations for the devices associated with it. Since we are not

going to involve with the Execution Level, we will not specified ,5,, here, but point out that

only transitions tl and t2 pass operation instructions to the camera controllers and all other

transitions just deal with internal information processing, e.g., feature extraction, pattern

recognition, and image fusion. By the same reason, the translation mapping _,, for the

vision coordinator will not be fully specified.

simulation, for transitions t2 and t4, we assume that

(_,,(t2, L)={vgx, vg2},

f2],

where

However, in order to perform the

v =the operation instructions for the camera controllers,

gl=the fast algorithm for feature extraction and pattern identification,

g2=the accurate algorithm for feature extraction and pattern identification,

fl=the fast algorithm for image fusion,



f2=thcaccuratealgorithmforimage fusion.
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C. Oneration _rocedur©: Once receiving a task from the dispatcher (when a token is

displaced in itsinput point.,specifyingthe task iseitherVl or v2),the visioncoordinator

startstheprocess by firingt,.Depending on theinformationcoded inthe token of the initial

place Pl and the currentsystem status,the coordinatorstartseithertransitionq or t2,i.e.,

eithertosetup camera angle,focus,lens,etc.,and to calibratethe cameras first,and then

take picture,or to take picturewithout calibrating.Transitiont2can selectone of the two

operationsvg2 and vg2 according to the informationcoded in itsinput token and the task

issued. Ifthe relevant featuresand patterns axe extracted and identifiedin the picture

obtained, then n'ansition t4 is fired to perform the image fusion process using the

information collected by t2,otherwise, t3 is firedto back to Pl to take new picture.

Transitiont4alsohas two alternativesforimage fusing,fland f2.Upon the completion of

fusion process, either transitiont_ or transitiont5 will bc fixed.A successful fusion

process, i.e.,the required visualinformation isobtained,rcsuks in the end of the vision

process (thefiringof t6),otherwise leads to the firingof ts,which may furtherlead to the

firingof t7ifitisdecided thatthe dcsixcd informationcan not bc obtained by the vision

system from the environment. Once a token reaches thefinalplace pf,the f'maltransitiontf

willbc f'u'edtoreporttheresultto thedispatcherand toresetthe input scmaphorc and the

startplace,indicatingthatthevisioncoordinatorisavailablefortaskagain.

6.1.3 The Petri Net Transducer for the Sensor Coordinator

A. Petri net Model: The Petri net model for the sensor coordinator has the same

structure as that of the PNT for the vision coordinator, as shown in Figure 6.3, but with

different transition and place function. Places and transitions for the sensor coordinator are

specified as follows:
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Places:

Ps: the start place;

Pl: initialization process;

1>2:feature extraction and identification process;

P3: feature fusion process;

pf: the final place.

Transitions:

ts: initializing the sensor system;

tl: calibrating;,

t2: taking data and performing feature extraction and identification;

t3: returning to the initial place Pl because the failure of feature extraction

and identification;

t4: performing the feature fusion to obtain the required information, like

location and orientation;

ts: returning to the initial place Pt because the failure of the image fusion;

t6: finishing the sensor process;

tT: acknowledging the failure of the sensor process;

tf: reporting the results and resetting the sensor input semaphore.

B. Task Translation: The input alphabet is assumed to be Es={Sl, s2}, where

sl=the minimum-error sensor procedure,

s2=the minimum-time sensor procedure.

The output alphabet As of the sensor coordinator, as for the vision coordinator, will

not be specified here. Similar to the vision coordinator, only transitions tl and t2 pass



operation instructions to the sensor controUcrs and all other transitions just deal with

internal information processing. Again, for transitions t2 and r4, we assume that

cs(t2, _.)=[sdl, sd2},

o',(u.,_.)=(cz,cz],

where

s =the operation instructions for the sensor controllers,

dz=the fast algorithm for feature extraction and pattern identLficauon,

d2=the accurate algorithm for feature extraction and pattern identification,

cl=the fast algorithm for feature fusion,

c2=the accurate algorithm for feature fusion.
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C. Overation nrocedure: Once receiving a task from the dispatcher (when a token is

displaced in its input point, specifying the task is either sz or s-z), the sensor coordinator

starts the process by firing t_. Depending on the information codex[ in the token of the initial

place Pz and the current system status, the coordinator staxts either transition tz or t2, i.e.,

either to set up sensor parameter and to calibrate the sensors first, and then take data, or to

take data without calibrating. Transition t2 can select one of the two operations sd2 and sd2

according to the information coded in its input token and the task issued. If the relevant

features and patterns are extracted and identified in the data obtained, then transition t4 is

fired to perform the feature fusion process using the information collected by t2, otherwise,

t3 is fired to back to Pl to take new data. Transition _ also has two alternatives for feature

fusing, cz and cz. Upon the completion of fusion process, either transition t6 or transition

t5 will be fined. A successful fusion process, i.e., the required information is obtained,

results in the end of the sensor process (the firing of t_), otherwise leads to the firing of ts,

which may further lead to the fixing of t7 ff it is decided that the desired information can not

be obtained by the sensor system from the environment. Once a token reaches the final

place pf, the final transition tf will be f'n-ed to report the result to the dispatcher and to reset



the input semaphoreandthestartplace, indicating that the sensor coordinator is available

for task again.
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6.1.4 The Petri Net Transducer for the Motion Coordinator

/_. Petri net Model: The Petri net model for the motion coordinator, given in Figure

6.4, consists of 7 places and 12 transitions. These places and transitions are specified as

follows:

\\

Places:

Ps"

Pl:

P3"

P4:

P5:

Pf:

Transitions:

the start place;

initialization process;

path planning process;

arm moving process;

hand approaching process;

grasping approaching process;

the final place.

t_: initializing the motion system;

q: calibrating;,

t2: planning path for arm;

t3: issuing arm motion instructions;

ta: returning to the initiaI place Pz because the desired location is not

reached;

ts: finishing the arm motion;

tt: determining the path for hand to approach the desired object (fine path

planning), and issuing hand approach instructions;
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t-_:issuinggraspinginstructions;

r_:returningtothe inirlalplacePt because the specifi_ objectisnot seiz_

or not pu_ed tothede.sir_location;

tg: finishing grasping process;

tt0: acknowledging the failure of motion process;

tf: reporting execution results and resetting the motion input semaphore and

the start place.

66

B. Task Translation: The input alphabet is assumed to be Zm={ml, m2, hi, h2},

where

mr=the minimum-error motion procedure,

m2fthe minimum-time motion procedure,

hi--the minimnm-error grasp procedure,

h2=th¢ minimum-time grasp procedt_.

As for the vision coordinator and the sensor coordinator, the output alphabet Am of

the motion coordinator is not specified here. The transitions which pass operation

instructions to the arm or hand controllers are tt, t3, tt, and tT. All other transitions deal

with internal information processing like path planing and execution verification. The

translation mapping c,, for transitions t3 and t7 are assumed to be

am(t3,x.)={it,12},

crm(t7, _.)={kx,k2},

where

v =the operation instructions for the camera controllers,

It=the fast arm control algorithm for arm controllers,

12=the accurate arm control algorithm for arm controllers,

kl=the fast hand control algorithm for hand controllers,



k2=the accurate hand control algorithm for hand controllers,
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C. Oaeration arocedure: Once receiving a task from the dispatcher (when a token is

displaced in its input point, specifying the task is which of {ml, mE, hi, h2}), the motion

coordinator starts the process by f'a'ing ts. Depending on the information coded in the token

of the initial place Pt and the current system status, the coordinator starts either transition tl

6

or one of t2 and t6, i.e., either to calibrate the arm or hand fu'st, and then to execute arm or

hand motions, or to execute arm or hand motions without calibrating. If the task is to move

the upper arm (i.e., one of ml and m2 is received), transition t2 will be f'Lred, otherwise the

task is to move the hand (i.e., one of ht and h2 is received) and t6 will be fired. Both

transitions t3 and t7 have two alternatives to control the arm 01 and 12) or the hand (kl and

k2). The successful execution of the arm motion (by t3) or hand grasp (by tT) will lead to

the f'wing of transitions t5 or tg, indicating the end of the successful motion process,

otherwise transitions t4 or ts will be fired, which may further result in the firing of tto,

acknowledging the failure of the motion process. In any case, once a token reaches the final

place pf, the final transition tf will be fired to report the execution result to the dispatcher

and to reset the input semaphore and the start place, indicating that the motion coordinator

is available for task again.

6.1.5 The Simple Coordination Structure for the Coordination Level

The (simple) coordination structure for the Coordination Level now can be

constructed from the individual PNTs for the dispatcher and coordinators by introducing

the connection points and the receiving and sending functions. The pattern of the

connection points in a coordination structure is pre-fixed, i.e., each coordinator is

associated with four connection points, the input point, the input semaphore, the output

point, and the output semaphore.
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The dispatcherreceivingand sending functionsam specifiedas

RD--{ (tl, f;I), (t2, f;I ), (t2, _O), (t2,f_Si), (t3, fO ), (t3, _O), (tS, f_I), (ts, _I ),

(t6, :sI), (t_, fo), (t_, :o),(t6,f_si), (tT, _), (tT, _)}

SD={ (tl, f_), (t2, _), (t2, Go), (t2,_), (t3, f_o),, (t3, Co), (ts, _), (t,, _),

(,,,:,), f o), ), qo) 
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The coordinator receiving and sending functions for a simple coordination structure

are fixed. In our case, it follows that for each coordinator

{(ts, fI), (tf, fso)}e Rc, {(tf, fsl), (tf, fo)}e Sc

as shown by the dash arcs in the Figures 6.2-4.

Figure 6.5 gives the overall structure of the coordination structure (the arrows for

the receiving and sending links are omitted). It should be pointed out that the PNs of the

dispatcher and coordinators are bounded and Live, therefore the coordination structure is

also bounded and live by the theorems 4.3 and 4.4.

6.2 Simulation of the Task Processes in the Coordination Structure

Now we describe the results of the task processing simulation on the coordination

structure constructed above.

A. Assumvtions: From the section 5.2, to simulate the task processing, we have to (i)

specify the situations for each transition in the dispatcher and the coordinators, (ii) assume

the cost functions (performance indices) for each task translation of a transition.
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The situations can be specified in terms of the information encoded in the tokens of

a Petri net (or colors of tokens, as called in the colored Petri nets). For the dispatcher, we

assume that the tokens in the places can be classified into one of the two types: the normal

token and the special token. The meaning of "normal" and "special" can vary from place to

place. Besides the normal and the special types, the tokens in the places of Pa and P7 may

take another type: the back token, and the tokens in the places of P8 may be afinish type.

This can be written as

pl=p2=p3=Ps=ps={n, s}, p4=pT={n, s, b}, ps={n, s, f},

When the token in P4 or P7 is the back type, the transition t4 or ts has to be fired. For Pz, a

finish token indicates the completion of the task execution, otherwise, the transition tlo has

to be fired to continue the task processing. We assumed that for every places, the normal

tokens are desired.
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For the connection points,thetokensin the outputpointsarc assumed to have only

two types:thesuccessfultoken indicatingthetaskhas been wcU executed and thefailtoken

indicatingthe task has been poorly executed. The meaning of "successful"and "fail"

depends the particularcriterionselected(i.c.,the "fail"do not necessarilymeans the failure

of the execution)and can vary from coordinatortocoordinator.However, we assumed that

successfultokcns arc more desiredthan thefailtokens.

The situationsforthetransitionsof thedispatchernow can be summarized as

t1:{n, s}I, MI=2;

tz: {n, s}Zx{succ, fail},, M2=4;

t3: {n, spx{succ, fail}, x{succ, fail}=, M3=8;

t4: {b}', NLI=I;

ts: {n, s} 4, M5=2;

t6: {n, s] _ ×{succ, fail}, x{succ, fail},, M6=8;



t_: {n, s} s ×{succ, fail}" x{succ, fail}', M-r=8;

is: {b} _, Ms-I;

tg: {n, s} _, M9=2;

tlo: {n, s} s, M1o=2;

superscripts of { } indicate the places that the tokens in { } belong to. Note that, to simplify

the simulation,we assume thatthe transitiont7treatsthe threesubtasksel,c2,and e2 as the

same, otherwise,t'1willhave 3x8=24 diffcrcntsituations.To furthcrsimplifythe problem,

itisassumed thatthe transitionst3,t6,and t7classifiedthefeedbacks from the coordinators

into two classes:

t3:c1={(suss',suss=),(fail",succ=),suss=},c2={(succ',fail=),(fail",fail=),fail=}

t6:c1={(suss",suss,),(fail,,succ,),suss,}, c2={(succ',fail,),(fail,,fail,),fail,}

t_:cl={(suss',suss=),(fail..suss=),suss=},c2={(suss',fail=).(fail..fail=),fail=}

where the superscriptof succ or failindicateswhere the feedback comes fxom. Therefore

the numbers of the situationsforthe transitionst3,t_,and t_are reduced toM3=IV_=M-]=.4.
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For the visioncoordinator,we only consider the translationsin the u'ansirionst2

and t4.The executions by t2and t4 arc also assumed to bc always successful,thus the

u"ansitionst3.t4,and t-1willbc never bc f'trcckThe tokens in the place I>2(or the execution

resultsof t2)can be Yl or Y2, and the executionresultof t4iseither"successful"or "fail",

as aircadyassumed forthe outputpoints.The situationsfort2and t4are assumed to bc

t2: {vl, v2}, M2=2;

t4:{vl,v2} x{yl, y2}2, M.4---4;

The consideration for the sensor coordinator is the same as thatfor the vision

coordinator,thatis,the executions by t2and t4arc assumed to bc always successful.The

tokens in theplace p_ can bc zl or z2,and theexecutionresultof t4iseither"succcssfur'or

"fail".The situationsfort2and t4arcassumed to bc



t2: {Sl, s2}, M2=2;

U: {sl, s2} x{zl, z2}:, M4--4;
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For the motion coordinator, only the translations in the mansidons t3 and t7 are

eonsid=ed. Similarly, the executions by t3 and t7 are assumed to be always successful,

thus the wansidons _. ts, and h0 will be never be fired. The execution result of t3 or t7 is

either "successful" or "fail", as already assumed for the output points. The situations for t3

and t7 are assumed to be

t3: {ml, m2},

tT:{hl,h2},

M3=2;

M7--4;

The cost functions for the transitions in the dispatcher are assumed to be

(p2=n, _=succ) (p2=n,_o=faiI) (p2=s,_=succ) (p2=S,_o=fail)

.l(tt)= 1 2 2 5

(p3=n, fOr-el) (p3=n, fo=c2) (p3=s, fo=cl) (p3=s, fO=C2)

J(t2)= 1 2 2 5

(ps=n, fo---succ) (ps=n, fo=fail) (ps=s, fo=succ) (ps=s, fo=fail)

J(ts)= 1 2 2 5

(p6=n, to=el) (p6=n, fo=c2) (p6=s, fo=cl) (p6=s, fo=c2)

J(t6)= 1 2 2 5

that is, when a normal token in the place P'2 and a successful token in the vision output t o

are observed after the execution of tl, the cost is 1; and when a normal token in the place P3

and a class 2 feedback from the vision output _ and the vision output f_oare observed after



the executionof t2,the costis2; ...,etc.To model the effectsof the transitionexecutions,

wc assume the followingconditionalprobabilities
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tl'.

t5•

t2."

t6."

prob(p2=n Iv1, pl=n)--4/5; prob(p.2=rt Iv2, pl=n)=2/5;

prob(p2=n Iv1, p_=s)=2/5; prob(p2=n Iv2, pl=n) = 1/5;

prob(p2--s I-) can determined by prob(p2=s I-)=1 - prob(p2=n I-).

prob(ps=n lul, p4=n)---4/5; prob(p_=n lu2, p4=n)=2/5;

prob(ps=n lul, p4=s)=2/5; prob(ps=n lu2, p4=n)=l/5;

prob(ps=s I-) can determined by prob(ps=s I-)=1 - prob(ps=n I-).

prob(p3=n lUl, nl)--4/5; prob(p3=n lu2, nl)=3/5;

prob(p3=n lul, n_=3/5; prob(P3=n lu2, n2)=2/5;

prob(p3=nlul,n3)=3/lO; prob(p3--n iu2, n3)=1/5;

prob(p3=n lu3, nl)=2/5;

prob(p3=n lu3, n2)=1/5;

prob(p3--n lu3, n3)=l/lO;

prob(p3=s I-) can determined by prob(P3fS 1-)=1 - prob(p3=n _-).

prob(ps=n lul, nl)--4/5; prob(p6--'n lu2, nl)=3/5;

prob(p6--n lul, nz)=3/5; prob(p6=n lu2, n2)=2/5;

prob(p6=nlul,n3)=3/10; prob(p6=n lu2, n3)= 1/5;

prob(p6=n lu3, nl)=2/5;

prob(p6=n lu3, n2)=1/5;

prob(p6=n lu3, n3)=l/lO;

prob(p6=s I-) can determined by prob(p6=s I-)= 1 - prob(p6=n I-).

To simplify the simulation, the translation strings for t5 has been grouped into two

sets ul and u2, and the translation strings for t2 or t6 has been grouped into three sets ul,

u2, and u3. The four situations for t2 or t6 are also reduced to three cases n_, n2, and n3,

according to the assumed cost functions for two transitions. The reductions are specified as

ts: Ul={VlSl, v2sl, sl}, u2={vls2, v2s2, s2};

t2: ul={mlvl}, u2={mtv2, m2vl, rot}, u3={m2v2, m2};

nl={(n, cl)}, n2={(n, c2), (s, cl)}, n3={(s, c2)};

t6: ut={hlsl}, u2={hls2, h2sl, hl}, u3=(h2s2, h2};



n1={(n, cO}, n2={(n, c2),(s,cl)), n3={(s,c2)};
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No learningisperformed fortheinternaltransitionst3,t4,tT,is,tg,and h0. The

decision-makings forthem arc assumed eitherdeterministicor pure random ones, as given

in the following,

t3•

t4."

t8:

to:

tlo:

prob(p4=nlp3=n,fo=cl)=l,prob(p4=slp3=n,fo=C2or p3=s,fo=c0 = I,

prob(p4=blp3=s,fo=c2)=1;

prob(pl=nlp4=b)= prob(pl=slp4=b)=i/2;

prob(p4---n[pT=b)= prob(p4=s[pT=b)= prob(p4=blpT=b)=I/3;

prob(ps=nlp?=n)= prob(ps---slpT=s)= I ifthetaskhasnotbeen completed;

Im'ob(p1=nlps=n)= prob(p1=slps=s)= I;

for the transitionto,the completion of thetaskmeans no subtasks are lefton the input mpc

of the dispatchcr.

The costfunctionsforthe transitionsin thecoordinatorsarc assumed tobc

vision: J'(t2)=l if 1>2=y2, I(t2)=O if p2=yl;

J(t4)=l if p3--succ, J(t4)--O if p3=fail;

sensor:, l(t_=l ff I_=Z2, J(tz)=O if p2=zl;

ff(_)=lifp3=succ,_'(_)--0ifp3=fail;

motion: J(t3)=1ifp3=succ, J(t3)=0ifp3=fail,

I(tT)=l if ps=succ, J(t-/)=O if ps=fail;

clearly, wc assume the execution result Yl or zl is more dcsire.d that )'2 or z2.

The effectsof the transitionexecutionsarc assumed as:



vision:

sensor:

motion:

prob(l_=yllvgl, Vl) = 4/5, prob(p2=yllvg2, vl) = I/5,

prob(p2=yllvgl, v2) = I/5, prob(p2=yllvg2, v2) = 4/5;

prob(p3=succlfl, vl, p2=yl)---4/5, prob(p3=succlf2, vl, P2=yl)=3/5,

prob(p3=succlfi, vbp2=y2)= I/2, prob(p3=succlf2,vl,P2=y2)= I/I O,

prob(p3=succlfb v2,p2=yl)ffil/10, prob(p3=succlf2,v 2, p2=yt)=2/5,

prob(p3=succlfl, v2,p2=y2)=2/5, prob(p3=succlf2,v2,p2=y2)--4/5;

prob(p2=zllsdb sl) = 4/5, prob(p2fzllsd2, sl) = I/5,

prob(p2=zllsdl, s2) = I/5, prob(p2=zllsd2, s2) = 4/5;

prob(p3=succlcb sb p2=zl)--4/5, prob(p3=succlc2, sb p2=zl)=3/5,

prob(p3=succlcb sbp2=zz)=I/2, prob(p3=succlc2,sl,P.2=z_=l/lO,

prob(p3=succlcb s2,p2=zl)=1/lO, prob(p3=succlc2,s2, p2=zl)=2/5,

prob(p3=succlcl, s2,p2=z2)=2/5, prob(p3=succlc2,s2,P2=Z2)--4/5;

prob(p3---succlll, mi)=4/5, prob(p3ffisuccll2, mi)=1/5,

prob(p3ffisuccllb m:O=3/10, prob(p3=succll2, m2)=4/5;

prob(p7=succlkl, hi)--4/5, prob(pTffisucclk2, hi)=1/5,

prob(pTfsucclkl, h2)=3/10, prob(pv=succlk2, h2)--4/5;
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The average costs of the translations under different situations can be calculated as

vision:

sensor:

motion:

J(vgllvl)=0.2 °,

J(fllvl,yl)=0.2",

J(f21vl,Yl)--0.4,

J(sdÀ ISl)--'0.2",

J'(CliSl,Zl)=0.2",

J'(c21s 1,Zl)=0.4,

J(vg2lvl)---0.8; J(vgllv2)----0.8, J(vg21v2)--0.2";

J(fllvl,Y2)=0.5"; J(fl Iv2,Yl)---'0-9, J(fl Ivz,y2)=O. 6;

J(f21vl,Y2)=0.9; J(f21v2,Yl)=O. 6",J(f21v2,y2)=0.2";

J(sd21Sl)=0.8; J(sdlls2)=0.8, J(sd21s2)=0.2";

I(Cl Isl,z2)--0.5"; J(Cl Is2,zl)=0.9, ff(Cl Is2,z2)=O. 6;

.l(c21sl,z2)---0.9; l(c21s2,zl)=O. 6",.l(c21sx,z2)=0.2";

J(lllm!)=0.2", J(12lml)--0.8; J(lllm2)---0.7, J(121m2)----0.2";

l(kllhl)=0.2", .l(kxlhl)=0.8; J(kllh2)=0.7, J(k21h2)=0.2";



whereJ(wJs) is the average cost of the translation w under the situation s and the minimum

average costs at the given situations are marked with ". These average costs indicate that

when the situation vl is observed, the translation vgl ( of t2 in the vision coordinator)

should be selected ..... etc. Since the average costs are actually unknown, the optimal

translations have to be realized through learning by the coordinators.

Since the probabilities of feedbacks are changing with the learning processes in the

coordinators, the average costs for the translations in the dispatcher cannot be calculated.

However, the limit distributions of the feedbacks, that is, the distributions of the feedbacks

after the optimal translations in the coordinators have been learnt, can be found to be

vision: prob(succivl) = 0.8x0.8 + 0.5x0.2 = 0.74,

prob(succlv2) = 0.8x0.8 + 0Ax0.2 = 0.72;

sensor: prob(succlsl) = 0.8x0.8 + 0.5x0.2 = 0.7,#,

prob(succls2) = 0.8x0.8 + 0Ax0.2 = 0.72;

motion: prob(succlml) = 0.8, prob(succlmz) = 0.8;

prob(succlhl) = 0.8, prob(succlh2) = 0.8;

dispatcher:, t2: prob(cllmlv0=prob(climlvz)=prob(cllml)=prob(succlml) = 0.8,

prob(c l lm2v 1)--prob(c 11mgvz)=prob(c 11m2)=prob(succlmz) = 0.8;

ts: prob(CllVlSl)--prob(cllv2sl)=prob(cllSl)=prob(succlsl) = 0.74,

prob(cllvl sz)=prob(c l lv2s2)=prob(c l lsz)=prob(succls2.) = 0.72;

t6:prob(clJhlsl)--prob(cllhls2)=prob(cllhl)=prob(succlh0 = 0.8,

pro b(c 11hgs 1)=proh(c 11hgs2) =prob(c 11h2)--pro b(succ Ih2) = 0.8;

assuming that in the translation string sets ul, u2, and u3, every string in a set is selected

with the equal probability., we can find that, for the dispatcher
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[2:

t5:

t6:

prob(cllu 1)=prob(c l lu2)=prob(Cl lu3)-- O. 8;

prob(cllul) = 0.74, prob(cllu2) = 0.72;
'x

prob(c i Iu l)=prob(c 11ug)=pro b(cll u3)= O.8;
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Therefore, assuming the learning processed in the coordinators have been

completed, the average costs for the translations in the dispatcher now can be calculate as:

tl:

t2:

t5"

t6"

J(vllpl--n)=lxO.SxO.74+2x(O.8xO.26+O.2xO.74)+5xO.2xO.26=l.564",

J(v21pl=n)=lxO.4xO.72+2×(O.4×O.28+O.6xO.72)+5xO.6xO.28=2.216;

J(Vllp 1=s)= lxO.4xO.74+2x (0.4x0.26+0.6x0.74) +5 xO. 6x0.26=2.172",

J(v21pl--s)= 1xO.2xO.72+2x(O.2xO.28+O.8xO.72)+5xO.8xO.28=2.528;

J(ullnt)=l xO.8xO.8+2x(O.8xO.2+O.2xO.8)+5xO.2xO.2=1.48",

J(u21nl)= lxO. 6xO. 8+2x(0.6xO.2+O.4xO. 8)+5xO.4xO.2= 1.7 6,

J(u31nt)= lxO.4xO.8+2x(O.4×O.2+O.6xO.8)+5xO.6xO.2=2.04;

J(ullnT.)= 1 xO.6xO.8+2×(O.6xO.2+O.4xO.8)+5xO.4xO.2= 1.76",

J(u21n2)= lxO.4xO,8+2x(O.4xO.2+O.6xO.8)+5xO.6xO.2=2.04,

J(u31n2)=lxO.2xO.8+2x(O.2xO.2+O.SxO.8)+5xO.SxO.2=2.32;

J(ulln3)=lxO.3xO.8+2x(O.3xO.2+O.7xO.8)+5xO.7xO.2=2.18",

l(u21n3)= 1xO.2xO.8+2x(O.2xO.2+O.SxO.8)+5xO.SxO.2=2.32,

J(u31n3)=lxO.1xO.8+2x(O.lxO.2+O.9xO,8)+5xO.9xO.2=2.46;

J(ullp4=n)=1xO.8xO.74+2x(O.8xO.26+O.2xO.74)+5xO.2xO.26=l.564",

J(u21p,,=n )= 1xO .4xO.72+2x (0.4xO. 28 +0.6x0.72)+5 xO. 6xO. 28 =2.216;

J(ulip4=s)=lxO.4xO.74+2x(O.4×O.26+O.6xO.74)+5xO.6xO.26=2.172",

J(u21p4=s)= lxO.2xO.72+2x(0.2×0.28 +0.SxO.72)+5xO.8xO.28=2.528;

J(Ul Inl)= lxO.8xO.8+2x(O.8xO.2+O.2xO.8)+5xO.2xO.2= 1.48",

J(uxlnl)= lxO.6xO,8+2x (0.6xO.2+O.4xO. 8)+5xO.4xO.2= 1.76,

J(u31nl)=lxO.4×O.8+2x(O.4×O.2+O.6xO.8)+5xO.6xO.2=2.04;

l(ut lnz)= l xO.6xO,8+2x(O.6xO.2 +O.4xO,8)+5xO.4xO.2=1.7 6",

J(u21n2)=lxO.4xO,8+2x(O.4xO.2+O.6xO.8)+5xO.6xO.2-2.04,

J(u31n2)= lxO.2xO. 8+2x(O.2xO.2+O.8xO,8)+5xO.8xO.2=2.32;



.T(ul In3)= 1 xO.3xO. 8 +2x(0.3 xO.2+O.7xO. 8)+5xO.7xO.2=2.18",

J(u21n3)-1xO.2xO.8+2x(O.2xO.2+O.8xO.8)+5xO.8xO.2=2.32,

J(uslns)= lxO. lxO.8+2x(O. 1xO.2+O.9xO.8)+5xO.9xO.2=2.46;

The minimum average costs in the limit case at the given situations are marked with ". The

minimum average costs indicate that, when the learning time for the coordinators is longer

enough, for any situations, the transitions h, t2, ts, and hs should selected the fhst

translation or the translations in the fast translation set. Again, since the average costs are

actually unknown, the optimal translations have to be realized through learning by the

dispatcher. It should also be pointed out that the learning of the dispatcher depends the

learning of the coordinators.
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B. Simulation Result; The zero initial cost and the uniform initial subjective

probabilities used for all the translations. Also, the {3and y of the form

1
(k) = 7 (k) =_-

are used in the performance estimation and the subjective probability update algorithms for

all the translations. Note that the 13 and 7 selected satisfy Dvoretsky's convergence

conditions.

The following four task strings from the Organization Level are used as the inputs

to the dispatcher in the simulation

s lfeSe4e2eSe4e3eSe4el,

s2=ese4e2e4e3e4el,

s3 =ese4e2e5e4e3e4e 1,

s4=e5e4e2e4e3ese4e 1.
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These strings are defined based on the example by Valavanis (1986). To process these

strings, the initial mark of the dispatcher is settled up to be two tokens in the place Pl, and

no token in all other places. Each of the two initial tokens can be either a normal token or a

special token with the equal probability 0.5. The scheduling procedure described in the

section 5.1 is used for the task scheduling in the simulation.

\

Figure 6.6-6.12 in Appendix give the simulation results of executing each of the

tasks Sl, s2, s3, and s4 ten times. The total number of task executions, therefore, is 40.

Comparing the learning curves of the coordinators in Figure 6.6-12 and the learning curves

of the dispatcher in Figure 6.13-18, we can see clearly that the learning speeds in the

coordinators are much fast than the learning speeds in the dispatcher. This can be explained

by the fact that the learning in the dispatcher depends on the learning in the coordinators. It

seems that the dispatcher can learn its optimal translations only after the coordinators have

learnt their optimal translations. Figures 6.19-6.22 describe the changes of the total pure

translation entropies of the dispatcher and the coordinators. The situation distributions

appeared in the calculation of the pure translation entropies are replaced by the

corresponding frequencies in which situations occurred so far, since the real values are

unknown (see the section 5.2 for their calculations). These Figures indicate that the

learning can reduce the pure translation entropies. Again, the entropy reducing speed of the

dispatcher is much slow than that of the coordinators. Note that the behaviors of the vision

and the sensor coordinators are very similar, since the same structure, cost functions, and

probabilities are used for both of them.
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7. Conclusions and Future Researches

The work reported above is just the first step toward the establishment of a

complete analytic model for the Coordination Level of Intelligent Machines. However, it

does reflect the basic features of the model to be completed. Upon to this stage, the two

most difficult issues appeared in the research are

1. The gap between the theory and the reality of current robotic

systems. Since the controls at the Coordination Level of the

known robotic systems are deterministic, it is not clear how to

apply the probabilistic task translation for the current available

robotic systems.

2. The establishment of an ovcraU control formulation.The effort to

use Entropy as the overall control formulations had been made,

however, the desired result is not achieved. The entropy is used

passively in this report, that is, just as an index to measure the

learning process, not actively used as a performance index to

guide the task translation. Therefore some overall control

formulation for the Coordination Level is still to be found.

The following research focuses are suggested to be on

1. Develop a stcpwise refinement method for the design of bounded

and live Petri net models for the dispatcher and coordinators.



J

Some results have already been obtained. We hope to used this

stepwise method to expand the models constructed in the case

study, therefore to make a more realistic simulations;

8O

i

i

1

-I

i

2. Investigate the scheduling problem with time factor [Shen 1988];

3. Use the concepts developed in [Lauer and Campbell 1975] and

[Nehmer 1975] to build a general dispatcher, which is

applicable to a class of coordination activities, and use the Petri

net to model it;

4. See the possibility of introducing new learning algorithms.

5. Find some overall control formulations for the coordination level.

Based on what we already obtained, the team theoretic

formulation is the most promising one. However, the

difficulties rely on the way of describing the effects of transition

execution on each other and the chose of an overall cost

function, as required in the team-like theories. The team

formulation for integration, coordination of multi-sensor robot

system in [Durrant-Whyte 1987] and the intelligent control

method suggested in [Cruz and Stubberud 1987] are very good

references in this regard.

The focus 5 will be the main research focus in the next semester.
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Appendix

Simulation Results: Figures 6.6-22
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